Category: cloud

  • Facebook: No ‘definite plans’ to ARM data centers • The Register

    Image representing Facebook as depicted in Cru...
    Image via CrunchBase

    Clearly, ARM and Tilera are a potential threat to Intel’s server business. But it should be noted that even Google has called for caution when it comes to massively multicore systems. In a paper published in IEEE Micro last year, Google senior vice president of operations Urs Hölzle said that chips that spread workloads across more energy-efficient but slower cores may not be preferable to processors with faster but power-hungry cores.

    “So why doesn’t everyone want wimpy-core systems?” Hölzle writes. “Because in many corners of the real world, they’re prohibited by law – Amdahl’s law.

    via Facebook: No ‘definite plans’ to ARM data centers • The Register.

    The explanation given here by Google’s top systems person is that latency versus parallel processes overhead. Which means if you have to do all the steps in order, with a very low level of parallel tasks that results in much higher performance. And that is the measure that all the users of your service will judge you by. Making things massively parallel might provide the same level of response, but at a lower energy cost. However the complications due to communication and processing overhead to assemble all the data and send it over the wire will offset any advantage in power efficiency. In other words, everything takes longer and latency increases, and the users will deem your service to be slow and unresponsive. That’s the dilemna of Amdahl’s Law, the point of diminishing returns when adopting parallel computer architectures.

    Now compare this to something say we know much more concretely, like the Airline Industry. As the cost of tickets came down, the attempt to cut costs went up. Schedules for landings and gate assignments got more complicated and service levels have suffered terribly. No one is really all that happy about the service they get, even from the best airline currently operating. So maybe Amdahl’s Law doesn’t apply when there’s a false ceiling placed on what is acceptable in terms of the latency of a ‘system’. If airlines are not on time, but you still make your connection 99% of the time, who will complain? So by way of comparison there is a middle ground that may be achieved where more parallelizing of compute tasks will lower the energy required by a data center. It will require greater latency, and a worse experience for the users. But if everyone suffers equally from this and the service is not great but adequate, then the company will be able to cut costs through implementing more parallel processors in their data centers.

    I think Tilera holds a special attraction potentially for Facebook. Especially since Quanta their hardware assembler of choice is already putting together computers with the Tilera chip for customers now. It seems like this chain of associations might prove a way for Facebook to test the waters on a scale large enough to figure out the cost/benefits of massively parallel cpus in the data center. Maybe it will take another build out of a new data center to get there, but it will happen no doubt eventually.

  • Quanta crams 512 cores into pizza box server • The Register

    Image representing Tilera as depicted in Crunc...
    Image via CrunchBase

    Two of these boards are placed side-by-side in the chassis and stacked two high, for a total of eight server nodes. Eight nodes at 64 cores each gives you 512 total cores in a 2U chassis. The server boards slide out on individual trays and share two 1,100 watt power supplies that are stacked on top of each other and that are put in the center of the chassis. Each node has three SATA II ports and can have three 2.5-inch drives allocated to it; the chassis holds two dozen drives, mounted in the front and hot pluggable.

    via Quanta crams 512 cores into pizza box server • The Register.

    Amazing how power efficient Tilera has made it’s shipping products as Quanta has jammed 512 cores into a 2 Rack Unit high box. Roughly this is 20% the size of the SeaMicro SM-10000 based on Intel Atom cpus. Now that there’s a shipping product, I would like to see benchmarks or comparisons made on similar workloads using both sets of hardware. Numerically speaking it will be an apples-to-apples comparison. But each of these products is unique and are going to be difficult to judge in the coming year.

    First off, Intel Atom is an x86 compatible low power chip that helped launch the Asus/Acer netbook revolution (which until the iPad killed it was a big deal). However Quanta in order to get higher density on its hardware has chosen a different CPU than the Intel Atom (as used by SeaMicro). Instead Quanta is the primary customer for a new innovated chip company we have covered on carpetbomberz.com previously: Tilera. For those who have not been following the press releases from the company Tilera is a spin-off of an MIT research project in chip-scale networking. The idea was to create very simplified systems on a chip (whole computers scaled down to single chip) and then network them together all the same slice of silicon die. The speeds would be faster due to most of the physical interfaces and buses being contained directly on the chip circuits instead of externally on the computer’s motherboard. The promise of the Tilera chip is you can scaled up on the silicon wafer as opposed to the racks and racks of equipment within the datacenter. Performance of the Tilera chip has been somewhat a secret, no benchmarks or real comparisons to commercially shipping CPUs have been performed. But the feeling generally is any single core within a Tilera chip should be about as capable as the processor in your smartphone, and every bit as power efficient. Tilera has been planning to scale up to 100 cpus eventually within one single processor die and appears to have scaled up to 64 on its most recent research chips (far from being commercially produced at this point.)

    I suspect both SeaMicro and Quanta will have their own custom OSes which run as a central supervisor allowing the administrators to install and sets up instances of their  favorite workhorse OSes. Each OS instance will be doled out to an available CPU core and then be linked up to a virtual network and virtual storage interface. Boom! You got a web server, file server, rendering station, streaming server, whatever you need in one fell swoop. And it is all bound together with two 1,100 watt power supplies in each 2 Rack Unit sized box. I don’t know how that compares to the SeaMicro power supply, but I imagine it is likely smaller per core than the SM-10000. Which can only mean in the war for data power efficiency Quanta might deliver to market a huge shot across the bow of SeaMicro. All I can say is let the games begin, let the market determine the winner.

  • Microsoft Research Watch: AI, NoSQL and Microsoft’s Big Data Future

    Image representing Microsoft as depicted in Cr...
    Image via CrunchBase

    Probase is a Microsoft Research project described as an “ongoing project that focuses on knowledge acquisition and knowledge serving.” Its primary goal is to “enable machines to understand human behavior and human communication.” It can be compared to  Cyc, DBpedia or Freebase in that it is attempting to compile a massive collection of structured data that can be used to power artificial intelligence applications.

    via Microsoft Research Watch: AI, NoSQL and Microsoft’s Big Data Future – ReadWriteCloud.

    Who knew Microsoft was so interested in things only IBM Research’s Watson could demonstrate? AI (artificial intelligence) seems to be targeted at Bing search engine results. And in order to back this all up, they have to ditch their huge commitment to Microsoft SQL Server and go for a NoSQL database in order to hold all the unstructured data. This seems like a huge shift away from desktop and data center applications and something much more oriented to a cloud computing application where collected data is money in the bank. This is best expressed in the example given in the story of Google vs. Facebook. Google may collect data, but it is really delivering ads to eyeballs. Whereas Facebook is just collecting the data and sharing that to the highest bidder. Seems like Microsoft is going the Facebook route of wanting to collect and own the data rather than merely hosting other people’s data (like Google and Yahoo).