computers flash memory SSD technology wintel

AnandTech – Computex 2011: OCZs RevoDrive 3

OCZ Technology
Image via Wikipedia

Theres a new PCIe SSD in town: the RevoDrive 3. Armed with two SF-2281 controllers and anywhere from 128 – 256GB of NAND 120/240GB capacities, the RevoDrive 3 is similar to its predecessors in that the two controllers are RAIDed on card. Heres where things start to change though.

via AnandTech – Computex 2011: OCZs RevoDrive 3 & RevoDrive 3 X2, Now With TRIM.

OCZ is back with a revision of its consumer grade PCIe SSD, the RevoDrive. This time out the SandForce SF-2281 makes an appearance and to great I/O effect. The bus interface is a true PCIe bridge chip as opposed to the last versions PCI-X to PCIe bridge. Also this device can be controlled completely through the OSes own drive utilities and TRIM support. All combined this is the most natively and well support PCIe SSD to hit the market. No benchmarks yet from a commercially shipping product. But my fingers are crossed that this thing is going to be faster than OCZ’s Vertex 3 and Vertex 3 Pro (I hope) while possibly holding more flash memory chips than those SATA 6 based SSDs.

One other upshot of this revised product is full OS booting support. So not only will TRIM work but your motherboard and the PCIe’s card electronics will allow you to boot directly off of the card. So this is by far the most evolved and versatile PCIe based SSD drive to date. Pricing is the next big question on my mind after reading the specifications. Hopefully will not be Enterprise grade (greater than $1200). I’ve found most off the  prosumer and gamer market upgrade manufacturers are comfortable setting prices at the $1200 price point for these PCIe SSDs. And that trend has been pretty reliable going back to the original RevoDrive.

entertainment flash memory SSD

AnandTech – OCZ Agility 3 240GB Review

OCZ Technology
Image via Wikipedia

Theres another issue holding users back from the Vertex 3: capacity. The Vertex 3 is available in 120, 240 and 480GB versions, there is no 60GB model. If you’re on a budget or like to plan frequent but rational upgrades, the Vertex 3 can be a tough sell.

via AnandTech – OCZ Agility 3 240GB Review.

OCZ apart from having the fastest SSD on the market now is attempting to branch out and down market simultaneously. And by down market I don’t mean anything other than the almighty PRICE. It’s all about the upgrade market for the PC Fan boys that want to trade up to get the next higher performing part for their gaming computer (If people still do that, play games on their PeeCees). Performance-wise it is designed to be less expensive and this SSD shows that it is not the highest speed part. So if you demand to own an OCZ branded SSD and won’t settle for anything less, but you don’t want to pay $499 to get it, the Agility 3 is just for you. Also if you read the full review the charts will show how all the current generation SATA 6 drives are shaping up (Intel included) versus the previous generation SATA 2.0 drives (3Gbytes/sec). OCZ Vertex 3 is still the king of the mountain at the 240GB size, but is still very much at a price premium.

cloud computers data center flash memory SSD technology

EMC’s all-flash benediction: Turbulence ahead • The Register

Image via Wikipedia

A flash array controller needs: “An architecture built from the ground up around SSD technology that sizes cache, bandwidth, and processing power to match the IOPS that SSDs provide while extending their endurance. It requires an architecture designed to take advantage of SSDs unique properties in a way that makes a scalable all-SSD storage solution cost-effective today.”

via EMC’s all-flash benediction: Turbulence ahead • The Register.

I think that Storage Controllers are the point of differentiation now for the SSDs coming on the market today. Similarly the device that ties those SSDs into the comptuer and its OS are equally, nay more important. I’m thinking specifically about a product like the SandForce 2000 series SSD controllers. They more or less provide a SATA or SAS interface into a small array of flash memory chips that are made to look and act like a spinning hard drive. However, time is coming soon now where all those transitional conventions can just go away and a clean slate design can go forward. That’s why I’m such a big fan of the PCIe based flash storage products. I would love to see SandForce create a disk controller with one interface that speaks PCIe 2.0/3.0 and the other is just open to whatever technology Flash memory manufacturers are using today. Ideally then the Host Bus would always be a high speed PCI Express interface which could be licensed or designed from the ground up to speed I/O in and out of the Flash memory array. On the memory facing side it could be almost like an FPGA made to order according to the features, idiosyncrasies of any random Flash Memory architecture that is shipping at the time of manufacture. Same would apply for any type of error correction and over-provisioning for failed memory cells as the SSD ages through multiple read/write cycles.

In this article I quoted at the top from The Register, the big storage array vendors are attempting to market new products by adding Flash memory to either one component of the whole array product or in the case off EMC the whole product uses Flash memory based SSDs throughout. That more aggressive approach has seemed to be overly cost prohibitive given the manufacturing cost of large capacity commodity hard drives. But they problem is, in the market where these vendors compete, everyone pays an enormous price premium for the hard drives, storage controllers, cabling and software that makes it all work. Though the hard drive might be cheaper to manufacture, the storage array is not and that margin is what makes Storage Vendors a very profitable business to be in. As stated last week in the benchmark comparisons of High Throughput storage arrays, Flash based arrays are ‘faster’ per dollar than a well designed, engineered top-of-the-line hard drive based storage array from IBM. So for the segment of the industry that needs the throughput more than the total space, EMC will likely win out. But Texas Memory Systems (TMS) is out there too attempting to sign up OEM contracts with folks attempting to sell into the Storage Array market. The Register does a very good job surveying the current field of vendors and manufacturers trying to look at which companies might buy a smaller company like TMS. But the more important trend being spotted throughout the survey is the decidedly strong move towards native Flash memory in the storage arrays being sold into the Enterprise market. EMC has a lead, that most will be following real soon now.

computers data center flash memory SSD technology

TMS flash array blows Big Blue away • The Register

Memory collection
Image by teclasorg via Flickr

Texas Memory Systems has absolutely creamed the SPC-1 storage benchmark with a system that comfortably exceeds the current record-holding IBM system at a cost per transaction of 95 per cent less.

via TMS flash array blows Big Blue away • The Register.

One might ask a simple question, how is this even possible given the cost of the storage media involved. How is it a Flash based storage array from RamSan beat a huge pile of IBM hard drives all networked and bound together in a massive storage system? And how did it do it for less? Woe be to those unschooled in the ways of the Per-feshunal Data Center purchasing dept. You cannot enter the halls of the big players unless you got million dollar budgets for big iron servers and big iron storage. Fibre Channel and Infiniband rule the day when it comes to big data throughput. All those spinning drives accessed simultaneously as if each one held one slice of the data you were asking for, each one delivering up it’s 1/10 of 1% of the total file you were trying to retrieve. And the resulting speed makes it look like one hard drive that is 10X10 faster than your desktop computer hard drive all through the smoke and mirrors of the storage controllers and the software that makes them go. But what if, just what if we decided to take Flash memory chips and knit them together with a storage controller that made them appear to be just like a big iron storage system? Well since Flash obviously costs something more than $1 per gigabyte and disk drives cost somewhere less than 10 cents per gigabyte the Flash storage loses right?

In terms of total storage capacity Flash will lose for quite some time when you are talking about holding everything on disk all at the same time. But that is not what’s being benchmarked here at all. No, in fact what is being benchmarked is the rate at which Input (writing of data) and Output (reading of data) is done through the storage controllers. IOPS measure the total number of completed reads/writes done in a given amount of time. Previous to this latest example of the RamSan-630, IBM was king of the mountain with it’s huge striped Fibre Channel arrays all linked up through it’s own storage array controllers. RamSan came in at 400,503.2 IOPS as compared to IBM’s top of the line San Volume Controller with 380,489.3. That’s not very much difference you say, especially considering how much smaller the amount of data a RamSan can hold,… And that would be a valid argument but consider again, that’s not what we’re benchmarking it is the IOPS.

Total cost for the IBM benchmarked system per IOP was $18.83. RamSan (which best IBM in total IOPS) was a measly $1.05 per IOP. The cost is literally 95% less than IBM’s cost. Why? Consider the price (even if it was steeply discounted as most Tech Writers will say as a cavea) for IBM’s benchmarked system costs $7.17Million dollars. Remember I said you need million dollar budgets to play in the data center space. Now consider the RamSan-630 costs $419,000. If you want speed, dump your spinning hard drives, Flash is here to stay and you cannot argue with the speed versus the price at this level of performance. No doubt this is going to threaten the livelihood of a few big iron storage manufacturers. But through disruption, progress is made.

flash memory SSD technology

OCZ Acquires Indilinx SSD Controller Maker

OCZ Technology
Image via Wikipedia

Prior to SandForce‘s arrival, Indilinx was regarded as the leading makers of controllers for solid-state drives. The company gained both consumer and media favoritism when it demonstrated that drives based on its own controllers were competitive with lead drives made by Intel. Indilinx’s controllers allowed many SSD manufacturers to bring SSD prices down to a level where a large number of mainstream consumers started to take notice.

via OCZ Acquires Indilinx SSD Controller Maker.

This is surprising news especially following the announcement and benchmark testing of OCZ’s most recent SSD drives. They are the highest performing SATA based SSDs on the market and the boost in speed is derived primarily from their drive controller chip supplied by SandForce not Indilinx. Buying a competing manufacturer no doubt is going to disappoint their suppliers at SandForce. And I worry a bit that SandForce’s technical lead is something that even a good competitor like Indilinx won’t be able to overcome. I’m sticking with any drive that has the SandForce disk controller inside due to their track record of increasing performance and reliability with each new generation of product.

So I am of two minds, I guess it’s cool OCZ has enough power and money to provide its own drive controllers for its SSDs. But at the same time, the second place drive controller is a much slower, lower performance part than the top competitor. In future I hope OCZ is either able to introduce price variation by offering up SandForce vs. Indilinx based SSDs and charge less for Indilinx. If not, I don’t know how they will technologically achieve superiority now that SandForce has such a lead.

computers flash memory SSD technology

OCZ Vertex 3 Preview – AnandTech

Image via Wikipedia

The main categories here are SF-2100, SF-2200, SF-2500 and SF-2600. The 2500/2600 parts are focused on the enterprise. They’re put through more aggressive testing, their firmware supports enterprise specific features and they support the use of a supercap to minimize dataloss in the event of a power failure. The difference between the SF-2582 and the SF-2682 boils down to one feature: support for non-512B sectors. Whether or not you need support for this really depends on the type of system it’s going into. Some SANs demand non-512B sectors in which case the SF-2682 is the right choice.

via OCZ Vertex 3 Preview: Faster and Cheaper than the Vertex 3 Pro – AnandTech :: Your Source for Hardware Analysis and News.

The cat is out of the bag, OCZ has not one but two SandForce SF-2000 series based SSDs out on the market now. And performance-wise the consumer level product is even slightly better performing than the enterprise level product at less cost. These indeed are interesting times. The speeds are so fast with the newer SandForce drive controllers that with a SATA 6GB/s drive interface you get speeds close to what could only be purchased on a PCIe based SSD drive array for $1200 or so. The economics of this is getting topsy-turvy, new generations of single drives outdistancing previous top-end products (I’m talking about you Fusion-io and you Violin Memory). SandForce has become the drive controller for the rest of us and with speeds like this 500MB/sec. read and write what more could you possibly ask for? I would say the final bottleneck on the desktop/laptop computer is quickly vanishing and we’ll have to wait and see just how much faster the SSD drives become. My suspicion is now a computer motherboard’s BIOS will slowly creep up to be the last link in the chain of noticeable computer speed. Once we get a full range of UEFI motherboards and fully optimized embedded software to configure them we will have theoretically the fastest personal computers one could possibly design.