Categories
gpu h.264

AMD Clears the Air Around Project FreeSync

examples of video connectors
A/V Connectors currently in the market

AMD has been making lots of noise about Project FreeSync these past few months, but has also left plenty of questions unanswered.

via AMD Clears the Air Around Project FreeSync.

FreeSync, and nVidia G-sync both are attempting to get better 3D rendering out of today’s graphics cards no matter what part of the market they are aimed at. But like other “features” introduced by graphics card manufacturers there’s a drive now to set a standard common to the manufacturers of cards and hopefully too, the manufacturers of display panels.

Adaptive-Sync is the grail for which AMD is searching, promoting and lobbying for going forward. It’s not too manufacturer specific and is just open enough to be adopted by most folks. The benefits are there too, as the article states Tom’s Hardware has tried out nVidia’s G-sync and it works. Which is reassuring given that sometimes these “features” don’t always appear as big revolutionaries strides in engineering so much as marketing talking points.

AMD has been successful so far in pushing adoption by the folks who make RAMDACs and video scaler circuits for the display manufacturers. That’s the real heavy lifting in driving the standard. And with some slight delays you may see the display panel manufacturers adopt this ActiveSync standard within the next year.

 

Categories
cloud computers data center

AMD Launches First ARM-based Server CPU | EE Times

Image representing AMD as depicted in CrunchBase
Image via CrunchBase

In addition, AMD is planning to contribute to the Open Compute Project with a new micro-server design that utilizes the Opteron A-series, along with other architecture specifications for motherboards that Facebook helped developed called “Group Hug,” an agnostic server board design that can support traditional x86 processors, as well as ARM chips.

via AMD Launches First ARM-based Server CPU | EE Times.

Kudos to Facebook as they still continue support for the Open Compute project which they spearheaded some years back to encourage more widespread expertise and knowledge of large scale data centers. This new charge is to allow a pick-and-choose, best of breed kind of design whereby a CPU is not a fixed quantity but can be chosen or changed like a hard drive or RAM module. And with the motherboard firmware remaining more or less consistent regardless of the CPU chosen. This would allow mass customization based solely on the best CPU for a given job (HTTP, DNS, Compute, Storage, etc). And the spare capacity might be allowed to erode a little so that any general CPU could be somewhat more aggressively scheduled while some of it’s former, less efficient services could be migrated to more specialist mobile CPUs on another cluster. Each CPU doing the set of protocols, services it inherently does best. This flies further in the face of always choosing general compute style CPUs and letting the software do most of the heavy lifting once the programming is completed.

Enhanced by Zemanta
Categories
cloud computers data center gpu technology wintel

AMD Snatches New-Age Server Maker From Under Intel | Wired Enterprise | Wired.com

Image representing AMD as depicted in CrunchBase
Image via CrunchBase

Chip designer and chief Intel rival AMD has signed an agreement to acquire SeaMicro, a Silicon Valley startup that seeks to save power and space by building servers from hundreds of low-power processors.

via AMD Snatches New-Age Server Maker From Under Intel | Wired Enterprise | Wired.com.

It was bound to happen eventually, I guess. SeaMicro has been acquired by AMD. We’ll see what happens as a result as SeaMicro is a customer of Intel’s Atom chips and now most recently Xeon server chips as well. I have no idea where this is going or what AMD intends to do, but hopefully this won’t scare off any current or near future customers.

SeaMicro’s competitive advantage has been and will continue to be the development work they performed on that custom ASIC chip they use in all their systems. That bit of intellectual property was in essence the reason AMD decided to acquire SeaMicro and hopefully let it gain an engineering advantage for systems it might put out on the market in the future for large scale Data Centers.

While this is all pretty cool technology, I think that SeaMicro’s best move was to design its ASIC so that it could take virtually any common CPU. In fact, SeaMicro’s last big announcement introduced its SM10000-EX option, which uses low-power, quad-core Xeon processors to more than double compute performance while still keeping the high density, low-power characteristics of its siblings.

via SeaMicro acquisition: A game-changer for AMD • The Register.

So there you have it Wired and The Register are reporting the whole transaction pretty positively. Looks on the surface to be a win for AMD as it can design new server products and get them to market quickly using the SeaMicro ASIC as a key ingredient. SeaMicro can still service it’s current customers and eventually allow AMD to up sell or upgrade as needed to keep the ball rolling. And with AMD’s Fusion architecture marrying GPUs with CPU cores who knows what cool new servers might be possible? But as usual the nay-sayers the spreaders of Fear, Uncertainty and Doubt have questioned the value of SeaMicro and their original product he SM-10000.

Diane Bryant, the general manager of Intel’s data center and connected systems group at a press conference for the launch of new Xeon processors had this to say, ““We looked at the fabric and we told them thereafter that we weren’t even interested in the fabric,” when asked about SeaMicro’s attempt to interest Intel in buying out the company. To Intel there’s nothing special enough in the SeaMicro to warrant buying the company. Furthermore Bryant told Wired.com:

“…Intel has its own fabric plans. It just isn’t ready to talk about them yet. “We believe we have a compelling solution; we believe we have a great road map,” she said. “We just didn’t feel that the solution that SeaMicro was offering was superior.”

This is a move straight out of Microsoft’s marketing department circa 1992 where they would pre-announce a product that never shipped was barely developed beyond a prototype stage. If Intel is really working on this as a new product offering you would have seen an announcement by now, rather than a vague, tangential reference that appears more like a parting shot than a strategic direction. So I will be watching intently in the coming months and years if needed to see what if any Intel ‘fabric technology’ makes its way from the research lab, to the development lab and to final product shipping. However don’t be surprised if this is Intel attempting to undermine AMD’s choice to purchase SeaMicro. Likewise, Forbes.com later reported from a representative from SeaMicro that their company had not tried to encourage Intel to acquire SeaMicro. It is anyone’s guess who is really correct and being 100% honest in their recollections. However I am still betting on SeaMicro’s long term strategy of pursuing low power, ultra dense, massively parallel servers. It is an idea whose time has come.

Image representing Intel as depicted in CrunchBase
Image via CrunchBase
Categories
computers entertainment gpu h.264 media

AnandTech – AMD Radeon HD 7970 Review: 28nm And Graphics Core Next, Together As One

Image representing AMD as depicted in CrunchBase
Image via CrunchBase

Quick Sync made real-time H.264 encoding practical on even low-power devices, and made GPU encoding redundant at the time. AMD of course isn’t one to sit idle, and they have been hard at work at their own implementation of that technology: the Video Codec Engine VCE.

via AnandTech – AMD Radeon HD 7970 Review: 28nm And Graphics Core Next, Together As One.

Intel’s QuickSync helped speed up the realtime encoding of H.264 video. AMD is striking back and has Hybrid Mode VCE operations that will speed things up EVEN MORE! The key to having this hit the market and get widely adopted of course is the compatibility of the software with a wide range of video cards from AMD. The original CUDA software environment from nVidia took a while to disperse into the mainstream as it had a limited number of graphics cards it could support when it rolled out. Now it’s part of the infrastructure and more or less provided gratis whenever you buy ANY nVidia graphics card today. AMD has to follow this semi-forced adoption of this technology as fast as possible to deliver the benefit quickly. At the same time the User Interface to this VCE software had better be a great design and easy to use. Any type of configuration file dependencies and tweaking through preference files should be eliminated to the point where you merely move a slider up and down a scale (Slower->Faster). And that should be it.

And if need be AMD should commission an encoder App or a plug-in to an open source project like HandBrake to utilize the VCE capability upon detection of the graphics chip on the computer. Make it ‘just happen’ without the tempting early adopter approach of making a tool available and forcing people to ‘build’ a version of an open source encoder to utilize the hardware properly. Hands-off approaches that favor early adopters is going to consign this technology to the margins for a number of years if AMD doesn’t take a more activist role. QuickSync on Intel hasn’t been widely touted either so maybe it’s a moot point to urge anyone to treat their technology as an insanely great offering. But I think there’s definitely brand loyalty that could be brought into play if the performance gains to be had with a discreet graphics card far outpace the integrated graphics solution of QuickSync provided by Intel. If you can achieve a 10x order of magnitude boost, you should be pushing that to all the the potential computer purchasers from this announcement forward.