DDR4 Heir-Apparent Makes Progress | EE Times

The first DDR4 memory module was manufactured ...
The first DDR4 memory module was manufactured by Samsung and announced in January 2011. (Photo credit: Wikipedia)

The current paradigm has become increasingly complex, said Black, and HMC is a significant shift. It uses a vertical conduit called through-silicon via (TSV) that electrically connects a stack of individual chips to combine high-performance logic with DRAM die. Essentially, the memory modules are structured like a cube instead of being placed flat on a motherboard. This allows the technology to deliver 15 times the performance of DDR3 at only 30% of the power consumption.

via DDR4 Heir-Apparent Makes Progress | EE Times.

Even though DDR4 memory modules have been around in quantity for a short time, people are resistant to change. And the need for speed, whether it’s SSD’s stymied by SATA-2 data throughput or being married to DDR4 ram modules, is still pretty constant. But many manufacturers and analysts wonder aloud, “isn’t this speed good enough?”. That is true to an extent, the current OSes and chipset/motherboard manufacturers are perfectly happy cranking out product supporting the current state of the art. But know one wants to be the first to continue to push the ball of compute speed down the field. At least this industry group is attempting to get a plan in place for the next gen DDR memory modules. With any luck this spec will continue to evolve and sampled products will be sent ’round for everyone to review.

Given changes/advances in the storage and CPUs (PCIe SSDs, and 15 core Xeons), eventually a wall will be hit in compute per watt or raw I/O. Desktops will eventually benefit from any speed increases, but it will take time. We won’t see 10% better with each generation of hardware. Prices will need to come down before any of the mainstream consumer goods manufacturers adopt these technologies. But as previous articles have stated the “time to idle” measurement (which laptops and mobile devices strive to achieve) might be reason enough for the tablet or laptop manufacturers to push the state of the art and adopt these technologies faster than desktops.

Enhanced by Zemanta
Advertisements

The Memory Revolution | Sven Andersson | EE Times

A 256Kx4 Dynamic RAM chip on an early PC memor...
A 256Kx4 Dynamic RAM chip on an early PC memory card. (Photo by Ian Wilson) (Photo credit: Wikipedia)

In almost every kind of electronic equipment we buy today, there is memory in the form of SRAM and/or flash memory. Following Moores law, memories have doubled in size every second year. When Intel introduced the 1103 1Kbit dynamic RAM in 1971, it cost $20. Today, we can buy a 4Gbit SDRAM for the same price.

via The Memory Revolution | Sven Andersson | EE Times

Read now, a look back from an Ericsson engineer surveying the use of solid state, chip-based memory in electronic devices. It is always interesting to know how these things start and evolved over time. Advances in RAM design and manufacture are the quintessential example of Moore’s Law even more so than the advances in processors during the same time period. Yes CPUs are cool and very much a foundation upon which everything else rests (especially dynamic ram storage). But remember this Intel didn’t start out making microprocessors, they started out as a dynamic RAM chip company at a time that DRAM was just entering the market. That’s the foundation upon which even Gordon Moore knew the rate at which change was possible with silicon based semiconductor manufacturing.

Now we’re looking at mobile smartphone processors and System on Chip (SoC) advancing the state of the art. Desktop and server CPUs are making incremental gains but the smartphone is really trailblazing in showing what’s possible. We went from combining the CPU with the memory (so-called 3D memory) and now graphics accelerators (GPU) are in the mix. Multiple cores and soon fully 64bit clean cpu designs are entering the market (in the form of the latest model iPhones). It’s not just a memory revolution, but it is definitely a driver in the market when we migrated from magnetic core memory (state of the art in 1951-52 while developed at MIT) to the Dynamic RAM chip (state of the art in 1968-69). That drive to develop the DRAM brought all other silicon based processes along with it and all the boats were raised. So here’s to the DRAM chip that helped spur the revolution. Without those shoulders, the giants of today wouldn’t be able to stand.

Enhanced by Zemanta