gpu mobile science & technology

ARM vet: The CPUs future is threatened • The Register

8-inch silicon wafer with multiple intel Penti...
Image via Wikipedia

Harkening back to when he joined ARM, Segars said: “2G, back in the early 90s, was a hard problem. It was solved with a general-purpose processor, DSP, and a bit of control logic, but essentially it was a programmable thing. It was hard then – but by todays standards that was a complete walk in the park.”

He wasn’t merely indulging in “Hey you kids, get off my lawn!” old-guy nostalgia. He had a point to make about increasing silicon complexity – and he had figures to back it up: “A 4G modem,” he said, “which is going to deliver about 100X the bandwidth … is going to be about 500 times more complex than a 2G solution.”

via ARM vet: The CPUs future is threatened • The Register.

A very interesting look a the state of the art in microprocessor manufacturing, The Register talks with one of the principles at ARM, the folks who license their processor designs to almost every cell phone manufacturer worldwide. Looking at the trends in manufacturing, Simon Segars is predicting a more difficult level of sustained performance gains in the near future. Most advancement he feels will be had by integrating more kinds of processing and coordinating the I/O between those processors on the same processor die. Which is kind of what Intel is attempting to do integrating graphics cores, memory controllers and CPU all on one slice of silicon. But the software integration is the trickiest part, and Intel still sees fit to just add more general purpose CPU cores to continue making new sales. Processor clocks stay pretty rigidly near the 3GHz boundary and have not shifted significantly since the end of the Pentium IV era.

Note too, the difficulty of scaling up as well as designing the next gen chips. Referring back to my article from Dec.21,  2010; 450mm wafers (commentary on Electronista article), Intel is the only company rich enough to scale up to the next size of wafer. Every step in the manufacturing process has become so specialized that the motivation to create new devices for manufacture and test just isn’t there because the total number of manufacturers who can scale up to the next largest size of silicon wafer is probably 4 companies worldwide. That’s a measure of how exorbitantly expensive large scale chip manufacturing has become. It seems more and more a plateau is being reached in terms of clock speeds and the size of wafers finished in manufacturing. With these limits, Simon Segars thesis becomes even stronger.

computers science & technology technology

450mm chip wafers | Electronista

Image:Wafer 2 Zoll bis 8 Zoll.jpg uploaded by ...
Image via Wikipedia

Intel factory to make first 450mm chip wafers | Electronista.

Being a student of the history of technology I know that the silicon semiconductor industry has been able to scale production according to Moore’s Law. However apart from the advances in how small the transistors can be made (the real basis of Moore’s Law), the other scaling factor has been the size of the wafers. Back in the old days silicon crystals had to be drawn out from a furnace at a very even steady rate which forced them to be thin cylinders 1-2″ in diameter. However as techniques improved (including a neat trick where the crystal was re-melted to purify it) the crystals increase in diameter to a nice 4″ size that helped bring down costs. Then came the big migration to 6″ wafers, 8″ and now the 300mm wafer (roughly 12″). Now Intel is still on its freight train to further bring down costs by moving the wafers up to the next largest size (450mm) and is stilling shrinking the parts (down to an unbelievably skinny 22nm in size). As the wafers continue to grow, the cost of processing equipment goes up and the cost of the whole production facility will too. The last big price point for a new production fab for Intel was always $2Billion. There may be multiple production lines in that Fab, but you needed to always have upfront that required money in order to be competitive. And Intel was more than competitive, it could put 3 lines into production in 3 years (blowing the competition out of the water for a while) and make things very difficult in the industry.

Where things will really shake up is in the Flash memory production lines. The size of the design rulings for current flash memory chips at Intel is right around 22nm. Intel and Samsung both are trying to shrink down the feature sizes of all the circuits on their Single and Multi-Level Flash memory chips. Add to this the stacking of chips into super sandwiches and you find they can glue together 8 of their 8Gbyte chips, making for a single very thin 64Gbyte memory chip. This chip is then mated up to a memory controller and voila, the iPhone suddenly hits 64Gbytes of storage for all your apps and mp4’s from iTunes. Similarly on the hard drive end of the scale things will also wildly improve. Solid State Disk capacities should creep upwards further (beyond the top of the line 512Gbyte SSDs) as will the PCI Express based storage devices (probably doubling in capacity to 2 TeraBytes) after 450mm wafers take hold across the semiconductor industry. So it’s going to be a big deal if Chinese, Japanese and American companies get on the large silicon wafer bandwagon.