flash memory SSD wintel

OCZ Launches PCIe-Based HDD/SDD Hybrid Drive

By bypassing the SATA bottleneck, OCZs RevoDrive Hybrid promises transfer speeds up to 910 MB/s and up to 120,000 IOPS 4K random write. The SSD aspect reportedly uses a SandForce SF-2281 controller and the hard drive platters spin at 5,400rpm. On a whole, the hybrid drive makes good use of the companys proprietary Virtualized Controller Architecture.

via OCZ Launches PCIe-Based HDD/SDD Hybrid Drive.

RevoDrive Hybrid PCIe
Image from: Tom's Hardware

Good news on the Consumer Electronics front, OCZ continues to innovate on the desktop aftermarket introducing a new PCIe Flash product that marries a nice 1TByte Hard Drive to a 100GB flash-based SSD. The best of both worlds all in one neat little package. Previously you might buy these two devices seperately, 1 average sized Flash drive and 1 spacious Hard drive. Then you would configure the Flash Drive as your System boot drive and then using some kind of alias/shortcut trick have the Hard drive as your user folder to hold videos, pictures, etc. This has caused some very conservative types to sit out and wait for even bigger Flash drives hoping to store everything on one logical volume. But what they really want is a hybrid of big storage and fast speed and that according to the press release is what the OCZ Hybrid Drive delivers. With a SandForce drive controller and two drives the whole architecture is hidden away along with the caching algorithm that moves files between the flash and hard drive storage areas. To the end user, they see but one big Hard drive (albeit installed in one of their PCI card slots), but experience the faster bootup times, faster application loading times. I’m seriously considering adding one of these devices into a home computer we have and migrating the bootdrive and user home directories over to that, using the current hard drives as the Windows backup device. I think that would be a pretty robust setup and could accommodate a lot of future growth and expansion.

computers flash memory SSD technology

OCZ samples twin-core ARM SSD controller • The Register

OCZ Technology
Image via Wikipedia

OCZ says it is available for evaluation now by OEMs and, we presume, OCZ will be using it in its own flash products. Were looking at 1TB SSDs using TLC flash, shipping sequential data out at 500MB/sec which boot quickly, and could be combined to provide multi-TB flash data stores. Parallelising data access would provide multi-GB/sec I/O. The flash future looks bright.

via OCZ samples twin-core ARM SSD controller • The Register.

Who knew pairing an ARM core with the drive electronics for a Flash based SSD could be so successful. Not only are the ARM chips helping to drive the cpus on our handheld devices, they are now becoming the SSD Drive controllers too! If OCZ is able to create these drive controllers with good yields (say 70% on the first run) then they are going to hopefully give themselves a pricing advantage and get a higher profit margin per device sold. This is assuming they don’t have to pay royalties for the SandForce drive controller on every device they ship.

If OCZ was able to draw up their own drive controller, I would be surprised. However, since they have acquired Indilinx it seems like they are making good on the promise held by Indilinx’s current crop of drive controllers. Let’s just hope they are able to match the performance of SandForce at the same price points as well. Otherwise it’s nothing more than a kind of patent machine that will allow OCZ to wage lawsuits against competitors for Intellectual Property they acquired through the acquisition of Indilinx. And we have seen too much of that recently with Apple’s secret bid for Nortel’s patent pool and Google’s acquisition of Motorola.

computers flash memory SSD technology

New OCZ Z-Drive R4 PCIe SSD Achieves Record

Flag of Taipei City
Image via Wikipedia

Tuesday at Computex, OCZ claimed that it set a new benchmark of 1 million 4K write IOPS and 1.5 million read IOPS with a single Z-Drive R4 88-equipped 3U Colfax International Server.

via New OCZ Z-Drive R4 PCIe SSD Achieves Record.

Between the RevoDrive and the Z-Drive OCZ is tearing up the charts with product releases announced in Taipei, Taiwan‘s Computex 2011 trade show. This particular one off demonstration was using a number of OCZ’s announced but as yet unreleased Z-Drive R4 88 packed into a 3U Colfax International enclosure. In other words, it’s an idealized demonstration of what kind of performance you might achieve in a best case scenario.  The speeds are in excess of 3Gbytes/sec.  for writing and reading which for Webserving or Database hosting is going to make a big difference for people that need the I/O. Previously you would have had to use a very expensive large scale Fibre Channel hard drive array that split and RAID’d the data across so many spinning hard drive spindles that you might come partially close to matching these speeds. But the SIZE! Ohmigosh. You would not be able to fit that amount of hardware into a 3U enclosure, never. So space constrained data centers will benefit enormously from dumping some of their drive array infrastructure for these more compact I/O monsters (some are from other manufacturers too, like Violin, RamSan and Fusion-io). Again, as I have said before when Anandtech and Tom’s Hardware can get sample hardware to benchmark the performance I will be happy to see what else these PCIe SSDs can do.

entertainment flash memory SSD

AnandTech – OCZ Agility 3 240GB Review

OCZ Technology
Image via Wikipedia

Theres another issue holding users back from the Vertex 3: capacity. The Vertex 3 is available in 120, 240 and 480GB versions, there is no 60GB model. If you’re on a budget or like to plan frequent but rational upgrades, the Vertex 3 can be a tough sell.

via AnandTech – OCZ Agility 3 240GB Review.

OCZ apart from having the fastest SSD on the market now is attempting to branch out and down market simultaneously. And by down market I don’t mean anything other than the almighty PRICE. It’s all about the upgrade market for the PC Fan boys that want to trade up to get the next higher performing part for their gaming computer (If people still do that, play games on their PeeCees). Performance-wise it is designed to be less expensive and this SSD shows that it is not the highest speed part. So if you demand to own an OCZ branded SSD and won’t settle for anything less, but you don’t want to pay $499 to get it, the Agility 3 is just for you. Also if you read the full review the charts will show how all the current generation SATA 6 drives are shaping up (Intel included) versus the previous generation SATA 2.0 drives (3Gbytes/sec). OCZ Vertex 3 is still the king of the mountain at the 240GB size, but is still very much at a price premium.

computers flash memory SSD technology

OCZ Vertex 3 Preview – AnandTech

Image via Wikipedia

The main categories here are SF-2100, SF-2200, SF-2500 and SF-2600. The 2500/2600 parts are focused on the enterprise. They’re put through more aggressive testing, their firmware supports enterprise specific features and they support the use of a supercap to minimize dataloss in the event of a power failure. The difference between the SF-2582 and the SF-2682 boils down to one feature: support for non-512B sectors. Whether or not you need support for this really depends on the type of system it’s going into. Some SANs demand non-512B sectors in which case the SF-2682 is the right choice.

via OCZ Vertex 3 Preview: Faster and Cheaper than the Vertex 3 Pro – AnandTech :: Your Source for Hardware Analysis and News.

The cat is out of the bag, OCZ has not one but two SandForce SF-2000 series based SSDs out on the market now. And performance-wise the consumer level product is even slightly better performing than the enterprise level product at less cost. These indeed are interesting times. The speeds are so fast with the newer SandForce drive controllers that with a SATA 6GB/s drive interface you get speeds close to what could only be purchased on a PCIe based SSD drive array for $1200 or so. The economics of this is getting topsy-turvy, new generations of single drives outdistancing previous top-end products (I’m talking about you Fusion-io and you Violin Memory). SandForce has become the drive controller for the rest of us and with speeds like this 500MB/sec. read and write what more could you possibly ask for? I would say the final bottleneck on the desktop/laptop computer is quickly vanishing and we’ll have to wait and see just how much faster the SSD drives become. My suspicion is now a computer motherboard’s BIOS will slowly creep up to be the last link in the chain of noticeable computer speed. Once we get a full range of UEFI motherboards and fully optimized embedded software to configure them we will have theoretically the fastest personal computers one could possibly design.

computers data center flash memory technology

Next-Gen SandForce Controller Seen on OCZ SSD

Image representing SandForce as depicted in Cr...
Image via CrunchBase

Last week during CES 2011, The Tech Report spotted OCZ’s Vertex 3 Pro SSD–running in a demo system–using a next-generation SandForce SF-2582 controller and a 6Gbps Serial ATA interface. OCZ demonstrated its read and write speeds by running the ATTO Disk Benchmark which clearly showed the disk hitting sustained read speeds of 550 MB/s and sustained write speeds of 525 MB/s.

via Next-Gen SandForce Controller Seen on OCZ SSD.

Big news, test samples of the SandForce SF-2000 series flash memory controllers are being shown in products demoed at the Consumer Electronics Shows. And SSDs with SATA interfaces are testing through the roof. The numbers quoted for a 6GB/sec. SATA SSD are in the 500+GB/sec. range. Previously you would need to choose a PCIe based SSD drive from OCZ or Fusion-io to get anywhere near that high of  speed sustained. Combine this with the future possibility of SF-2000 being installed on future PCIe based SSDs and there’s no telling how much the throughput will scale. If four of the Vertex drives were bound together as a RAID 0 set with SF-2000 drive controllers managing it, is it possible to see a linear scaling of throughput. Could we see 2,000 MB/sec. on PCIe 8x SSD cards? And what would be the price on such a card fully configured with 1.2 TB of SSD drives? Hard to say what things may come, but just the thought of being able to buy retail versions of these makes me think a paradigm shift is in the works that neither Intel nor Microsoft are really thinking about right now.

One comment on this article as posted on the original website, Tom’s Hardware, included the observation that the speeds quoted for this SATA 6GBps drive are approaching the memory bandwidth of several generations old PC-133 DRAM memory chips. And as I have said previously, I still have an old first generation Titanium Powerbook from Apple that uses that same memory chip standard PC-133. So given that SSD hard drives are fast approaching the speed of somewhat older main memory chips I can only say we are fast approaching a paradigm shift in desktop and enterprise computing. I dub thee, the All Solid State (ASS) era where no magnetic or rotating mechanical media enter into the equation. We run on silicon semiconductors from top to bottom, no Giant Magneto-Resistive technology necessary. Even our removable media are flash memory based USB drives we put in our pockets and walk around with on key chains.

data center flash memory technology

A Quick Look at OCZ’s RevoDrive x2 – AnandTech


Serial Attached SCSI drive connector
SATA hard drive Interface - Image via Wikipedia


What OCZ (and other companies) ultimately need to do is introduce a SSD controller with a native PCI Express interface (or something else other than SATA). SandForce’s recent SF-2000 announcement showed us that SATA is an interface that simply can’t keep up with SSD controller evolution. At peak read/write speed of 500MB/s, even 6Gbps SATA is barely enough. It took us years to get to 6Gbps SATA, yet in about one year SandForce will have gone from maxing out 3Gbps SATA on sequential reads to nearing the limits of 6Gbps SATA.

via A Quick Look at OCZ’s RevoDrive x2: IBIS Performance without HSDL – AnandTech :: Your Source for Hardware Analysis and News.

It doesn’t appear the RevoDrive X2 is all that much better than four equivalent sized SSD drives in a four drive RAID Level 0 array. But hope springs eternal, and the author sums up where manufacturers should go with their future product announcements. I think everyone agrees SATA is the last thing we need to get full speed out of the Flash based SSDs, we need SandForce controllers with native PCIe interfaces and then maybe we will get our full money’s worth out of the SSDs we will buy in the near future. As an enterprise data center architect, I would seriously be following these product announcements and architecture requirements. Shrewdly choosing your data center storage architecture (what mix of spinning disks and SSD do you really need) will be a competitive advantage for data mining, Online Transaction Processing, and Cloud based software applications.

Until this article came out yesterday I was unaware that OCZ had an SSD product with a SAS (Serial Attached SCSI) interface. That drive is called the IBIS and OCZ describes the connector as HSDL (High Speed Data Link-an OCZ created term). Benchmarks of that device have shown it to be faster than it’s RevoDrive counterpart which uses an old style native hard drive interface (SATA). Anandtech is lobbying to dump SATA altogether even now that the most recent SATA version supports higher throughput (so called SATA 6). The legacy support built into the SATA interface is absolutely unnecessary given the speed of today’s flash memory chips and the SSDs they are designed into. SandForce has further complicated the issue by showing that their drive controllers can vastly out pace even SATA 6 drive interfaces. So as I have concluded in previous blog entries PCIe is the next logical and highest speed option after you look at all the spinning hard drive interfaces currently on the market. The next thing that needs to be addressed is the cost of designing and building these PCIe based SSD drives in the coming year. $1200 seems to be the going price for anything in the 512GB range with roughly 700MB/second data throughput. Once the price goes below the $1,0000 mark, I think the number of buyers will go up (albeit still niche consumers like PC Gamers). In the end we can only benefit by manufacturers dumping SATA for the PCIe interface and the Anandtech quote at the top of the blog, really reinforces what I’ve been observing so far this year.