Tag: Steve Furber

  • ARM creators Sophie Wilson and Steve Furber • reghardware

    BBC Micro
    BBC Micro (Photo credit: Wikipedia)

    Unsung Heroes of Tech Back in the late 1970s you wouldnt have guessed that this shy young Cambridge maths student named Wilson would be the seed for what has now become the hottest-selling microprocessor in the world.

    via Chris Bidmead: ARM creators Sophie Wilson and Steve Furber • reghardware.

    This is an amazing story of how a small computer company in Britain was able to jump into the chip design business and accidentally create a new paradigm in low power chips. Astounding what seemingly small groups can come with as complete product categories unto themselves. The BBC Micro was the single most important project that kept the company going and was produced as a learning aid for the BBC television show: The_Computer_Programme, a part of the BBC Computer Literacy Project. From that humble beginning of making the BBC Micro, Furber and Wilson’s ability to engineer a complete computer was well demonstrated.

    But whereas the BBC Micro used an off the shelf MOS 6502 cpu, a later computer used a custom (bespoke) designed chip created in house by Wilson and Furber. This is the vaunted Acorn Risc Machine (ARM) used in the Archimedes desktop computer. And that one chip helped launch a revolution unto itself in that the very first time the powered up a sample chip, the multimeter hooked up to registered no power draw. At first one would think this was a flaw, and ask “What the heck is happening here?” But in fact when further inspection showed that the multimeter was correct, the engineers discovered that the whole cpu was running of power that was leaking from the logic circuits within the chip itself. Yes, the low power requirement of this first sample chip of the ARM cpu in 1985 ran on 1/10 of a watt of electricity. And that ‘bug’ then went on to become a feature in later generations of the ARM architecture.

    Today we know of the ARM cpu cores as a bit of licensed Intellectual Property that any chip make can acquire and implement in their mobile processor designs. It has come to dominate many different architectures by different manufacturers as diverse as Qualcomm and Apple Inc. But none of it ever would have happened were it not for that somewhat surprising discovery of how power efficient that first sample chip really was when it was plugged into a development board. So thankyou Sophie Wilson and Steve Furber, as the designers and engineers today are able to stand upon your shoulders the way you once stood on the shoulders of people who designed the MOS 6502.

    MOS 6502 microprocessor in a dual in-line pack...
    MOS 6502 microprocessor in a dual in-line package, an extremely popular 8-bit design (Photo credit: Wikipedia)
  • ARM daddy simulates human brain with million-chip super • The Register

    British Scientist, nominated for the Millenniu...
    Steve Furber (Image via Wikipedia)

    While everyone in the IT racket is trying to figure out how many Intel Xeon and Atom chips can be replaced by ARM processors, Steve Furber, the main designer of the 32-bit ARM RISC processor at Acorn in the 1980s and now the ICL professor of engineering at the University of Manchester, is asking a different question, and that is: how many neurons can an ARM chip simulate?

    via ARM daddy simulates human brain with million-chip super • The Register.

    The phrase reminds me a bit of an old TV commercial that would air during the Saturday cartoons. Tootsie Roll brand lollipops had a center made out of Tootsie Roll. The challenge was to determine how many licks does it take to get to the center of a Tootsie Roll Pop? The answer was, “The World May Never Know”. And so it goes for the simulations large scale and otherwise of the human brain.

    I remember also reading Stewart Brand’s 1985 book about the MIT Media Lab and their installation of a brand new multi-processor super computer called The Connection Machine (TCM). Danny Hillis was the designer and author of the original concept of stringing together a series of small one bit computer cores to act like ‘neurons’ in a larger array of cpus. The scale was designed to top out at around 65,535 (2^16). At the time MIT Media Lab only had the machine filled up 1/4 of the way but was attempting to do useful work with it at that size. Hillis spun out of MIT to create a startup company called Thinking Machines (to reflect the neuron style architecture he had pursued as a grad student). In fact all of Hillis’s ideas stemmed from his research that led up to the original Connection Machine Mark. 1.

    Spring forward to today and the sudden appearance of massively parallel, low-power servers like Calxeda using ARM chips, Qanta Sq-2 using Tilera chips (also an MIT spin out). Similarly the Seamicro SM-10000×64 which uses Intel Atom chips in large scale, large quantity. And Seamicro is making sales TODAY. It almost seems like a stereotypical case of an idea being way ahead of its time. So recognize the opportunity because now the person directly responsible for designing the ARM chip is attacking that same problem Danny Hillis was all those years ago.

    Personally I would like to see Hillis join in some way with this program not as Principal Investigator but may a background consultant. Nothing wrong with a few more eyes on the preliminary designs. Especially with Hillis’s background in programming those old mega-scale computers. That is the true black art of trying to do a brain simulator on this scale. Steve Furber might just be able to make lightning strike twice (once for Acorn/ARM cpus and once more for simulating the brain in silicon).