Theres a new PCIe SSD in town: the RevoDrive 3. Armed with two SF-2281 controllers and anywhere from 128 – 256GB of NAND 120/240GB capacities, the RevoDrive 3 is similar to its predecessors in that the two controllers are RAIDed on card. Heres where things start to change though.
OCZ is back with a revision of its consumer grade PCIe SSD, the RevoDrive. This time out the SandForce SF-2281 makes an appearance and to great I/O effect. The bus interface is a true PCIe bridge chip as opposed to the last versions PCI-X to PCIe bridge. Also this device can be controlled completely through the OSes own drive utilities and TRIM support. All combined this is the most natively and well support PCIe SSD to hit the market. No benchmarks yet from a commercially shipping product. But my fingers are crossed that this thing is going to be faster than OCZ’s Vertex 3 and Vertex 3 Pro (I hope) while possibly holding more flash memory chips than those SATA 6 based SSDs.
One other upshot of this revised product is full OS booting support. So not only will TRIM work but your motherboard and the PCIe’s card electronics will allow you to boot directly off of the card. So this is by far the most evolved and versatile PCIe based SSD drive to date. Pricing is the next big question on my mind after reading the specifications. Hopefully will not be Enterprise grade (greater than $1200). I’ve found most off the prosumer and gamer market upgrade manufacturers are comfortable setting prices at the $1200 price point for these PCIe SSDs. And that trend has been pretty reliable going back to the original RevoDrive.
Usually every time there’s a die shrink of a computer processor there’s always an attendant evolution of the technology to to produce it. I think back recently to the introduction of super filtered water immersion lithography. The goal of immersion lithography was to increase the ability to resolve the fine line wire traces of the photo masks as they were exposed onto photosensitive emulsion coating a silicon wafer. The problem is the light travels from the photomask to the surface of the wafer through ‘air’. There’s a small gap, and air is full of optical scrambling atoms and molecules that make the photomask slightly blurry. If you put a layer of water between the mask the wafer, you have in a sense a ‘lens’ made of optically superior water molecules that act more predictably than ‘air’. Likewise you get better chip yields, more profit, higher margins etc.
As the wire traces on microchips continue to get thinner and transistors smaller the physics involved are harder to control. Electrodynamics begin to follow the laws of Quantum Electro-dynamics rather than Maxwell’s equations. This makes it harder to tell when a transistor has switched on or off and the basic digits of the digital computer (1s and 0s) become harder and harder to measure and register properly. IBM and Intel have waged a war on shrinking their dies all through the 80s and 90s. IBM chose to adopt new, sometimes exotic materials (copper metal for traces instead of aluminum, silicon on insulator, high-K dielectric gates). Intel chose to go the direction of improving what they had using higher energy light sources and only adopting very new processes when absolutely, positively necessary. At the same time, Intel was cranking out such volumes of current generation product it almost seem as though it didn’t need to innovate at all. But IBM kept Intel honest as did Taiwan Semiconductor Manufacturing Co. (contract manufacturer of micro-processors). And Intel continued to maintain its volume and technological advantage.
ARM (formerly the Acorn Risc Machine) became a cpu manufacturer during the golden age off RISC computers (early and mid-1980s). Over time they got out of manufacturing and started selling their processor designs to anyone that wanted to embed a core microprocessor into a bigger chip design. Eventually ARM became the defacto standard micro chip for smart handheld devices and telephones before Intel had to react. Intel had come up with a market leading low voltage cheap cpu in the Atom processor. But they did not have the specialized knowledge and capability ARM had with embedded cpus. Licensees of ARM designs began cranking out newer generations of higher performance and lower power cpus than Intel’s research labs could create and the stage was set for a battle royale of low power/high performance.
Which brings us now to an attempt to continue to scale down the processor power requirements through the same brute force that worked in the past. Moore’s Law, an epigram quoted from Intel’s Gordon Moore indicated the rate at which the ‘industry’ would continue to scaled down the size of the ‘wires’ in silicon chips would increase speed and lower costs. Speeds would double, prices would halve and this would continue on ad infinitum to some distant future. The problem has been always that the future is now. Intel hit a brick wall back around the end off the Pentium IV era when they couldn’t get speeds to double anymore without also doubling the amount of waste heat coming off of the chip. That heat was harder and harder to remove efficiently and soon, it appeared the chips would create so much heat they might melt. Intel worked around this by putting multiple CPUs on the same silicon wafers they used for previous generation chips and got some amount of performance scaling to work. Along those lines they have research projects to create first an 80 core processor, then a 48 and now a 24 core processor (which might actually turn into a shippable product). But what about Moore’s Law? Well, the scaling has continued downward, and power requirements have improved but it’s getting harder and harder to shave down those little wire traces and get the bang that drives profits for Intel. Now Intel is going the full-on research and development route by adopting a new way of making transistors on silicon. It’s called a Fin Field Effect Trasistor or FinFET. And it makes use of not just the surface layer of metal but the surface and the left and right sides, effectively giving you 3x the surface to move the electrons around the processor. If they can get this to work on a modern day silicon chip production line, they will be able to continue differentiating their product, keeping their costs manageable and selling more chips. But it’s a big risk and bet I’m sure everyone hopes will pay off.
Singe-chip Cloud Computer sounds a lot like that 80 core and 48 core CPU experiments that Intel had been working on a while back. There is a a note that the core is a Pentium 54c and that rings a bell too as it was the same core used for those multi-core CPUs. Now the research appears to be centered on the communications links between those cores and getting an optimal bit of work for a given amount of interconnectivity. Twenty-four cores is a big step down from 80 and 48 cores. I’m thinking Intel’s manufacturing process engineers are attempting to reign in the scope of this research to make it more worthy of manufacture. Whatever happens you will likely see adaptations or bits and pieces of these technologies in a future shipping product. I’m a little disappointed though that the scope has grown smaller. I had real high hopes Intel could pull off a big technological breakthrough with an 80 core CPU, but change comes slowly and Chip Fab lines are incredibly expensive to build, pilot and line out as they make new products. Conservatism is to be expected in an industry that has the highest level of up front capital expenditure required before there’s a return on the investment. If nothing else, companies like Seamicro, Tilera and ARM will continue to goose Intel into research efforts like this and innovate their old serial processors a little bit more.
On the other side of the argument there is the massive virtualization of OSes on more typical serial style multi-core CPUs from Intel. VMWare and competitors still continue to slice out clock cycles of the Intel processor to make them appear to be more than one physical machine. Datacenters have seen performance compromises using this scheme to be well worth the effort in staff and software licenses given the amount of space saved through consolidation. Less rack space, and power required, the higher the marginal return for that one computer host sitting on the network. But, what this article from The Register is trying to say is if a sufficiently dense multi-core cpu is used and the power requirements scaled down sufficiently you get the same kind of consolidation of rack space, but without the layer of software on top of it all to provide the virtualized computers themselves. A one-to-one relationship between computer core and actual virtual machine can be done without the typical machinations and complications required by a Hypervisor-style OS riding herd over the virtualized computers. In that case, less Hypervisor is more. More robust that is in terms of total compute cycles devoted to hosts, more robust design architecture to minimize single points of failure and choke points. So I say there’s plenty of room to innovate yet in the virtualization industry given that the CPUs and their architectures are in an early stage of innovating massively multi-core cpus.
Probase is a Microsoft Research project described as an “ongoing project that focuses on knowledge acquisition and knowledge serving.” Its primary goal is to “enable machines to understand human behavior and human communication.” It can be compared to Cyc, DBpedia or Freebase in that it is attempting to compile a massive collection of structured data that can be used to power artificial intelligence applications.
Who knew Microsoft was so interested in things only IBM Research’s Watson could demonstrate? AI (artificial intelligence) seems to be targeted at Bing search engine results. And in order to back this all up, they have to ditch their huge commitment to Microsoft SQL Server and go for a NoSQL database in order to hold all the unstructured data. This seems like a huge shift away from desktop and data center applications and something much more oriented to a cloud computing application where collected data is money in the bank. This is best expressed in the example given in the story of Google vs. Facebook. Google may collect data, but it is really delivering ads to eyeballs. Whereas Facebook is just collecting the data and sharing that to the highest bidder. Seems like Microsoft is going the Facebook route of wanting to collect and own the data rather than merely hosting other people’s data (like Google and Yahoo).
Quick Sync is just awesome. Its simply the best way to get videos onto your smartphone or tablet. Not only do you get most if not all of the quality of a software based transcode, you get performance thats better than what high-end discrete GPUs are able to offer. If you do a lot of video transcoding onto portable devices, Sandy Bridge will be worth the upgrade for Quick Sync alone.
For everyone else, Sandy Bridge is easily a no brainer. Unless you already have a high-end Core i7, this is what youll want to upgrade to.
Previously in this blog I have recounted stories from Tom’s Hardware and Anandtech.com surrounding the wicked cool idea of tapping the vast resources contained within your GPU while you’re not playing video games. Producers of GPUs like nVidia and AMD both wanted to market their products to people who not only gamed but occasionally ripped video from DVDs and played them back on ipods or other mobile devices. The amount of time sunk into doing these kinds of conversions were made somewhat less of a pain due to the ability to run the process on a dual core Wintel computer, browsing web pages while re-encoding the video in the background. But to get better speeds one almost always needs to monopolize all the cores on the machine and free software like HandBrake and others will take advantage of those extra cores, thus slowing your machine, but effectively speeding up the transcoding process. There was hope that GPUs could accelerate the transcoding process beyond what was achievable with a multi-core cpu from Intel. An example is also Apple’s widespread adoption of OpenCL as a pipeline to the GPU to send rendering requests for any video frames or video processing that may need to be done in iTunes, QuickTime or the iLife applications. And where I work, we get asked to do a lot of transcoding of video to different formats for customers. Usually someone wants a rip from a DVD that they can put on a flash drive and take with them into a classroom.
However, now it appears there is a revolution in speed in the works where Intel is giving you faster transcodes for free. I’m talking about Intel’s new Quick Sync technology using the integrated graphics core as a video transcode accelerator. The speeds of transcoding are amazingly fast and given the speed, trivial to do for anyone including the casual user. In the past everyone seemed to complain about how slow their computer was especially for ripping DVDs or transcoding the rips to smaller more portable formats. Now, it takes a few minutes to get an hour of video into the right format. No more blue Monday. Follow the link to the story and analysis from Anandtech.com as they ran head to head comparisons of all the available techniques of re-encoding/transcoding a Blue-ray video release into a smaller .mp4 file encoded in as h.264. They did comparisons of Intel four-core cpus (which took the longest and got pretty good quality) versus GPU accelerated transcodes, versus the new Intel QuickSync technology coming out soon on the Sandy Bridge gen Intel i7 cpus. It is wicked cool how fast these transcodes are and it will make the process of transcoding trivial compared to how long it takes to actually ‘watch’ the video you spent all that time converting.
Intel, Dell, EMC, Fujitsu and IBM are forming a working group to standardise PCIe-based solid state drives SSD, and have a webcast coming out today to discuss it.
Now this is interesting in that just two weeks after Angelbird pre-announces its own PCIe flash based SSD product, now Intel is forming a consortium. Things are heating up, this is now a hot new category and I want to draw your attention to a sentence in this Register article:
By connecting to a server’s PCIe bus, SSDs can pour out their contents faster to the server than by using Fibre Channel or SAS connectivity. The flash is used as a tier of memory below DRAM and cuts out drive array latency when reading and writing data.
This is without a doubt the first instance I have read that there is a belief, even just in the minds of the author of this article, that Fibre Channel and Serial Attached SCSI aren’t fast enough. Who knew PCI Express would be preferable to an old storage interface when it comes to enterprise computing? Lookout world, there’s a new sheriff in town and his name is PCIe SSD. This product category though will be not for the consumer end of the market at least not for this consortium. It is targeting the high margin, high end, data center market where interoperability keeps vendor lock-in from occurring. By choosing interoperability everyone has to gain an advantage not through engineering necessarily but through firmware most likely. If that’s the differentiator than whomever has the best embedded programming team will have the best throughput and the highest rated product. Let’s hope this all eventually finds a market saturation point driving the technology down into the consumer desktop, thus enabling a next big burst in desktop computer performance. I hope PCIe SSD’s become the next storage of choice and that motherboards can be rid of all SATA disk I/O ports and firmware in the near future. We don’t need SATA SSDs, we do need PCIe SSDs.
Extreme SSD performance over PCI-Express on the cheap? There’s hope!
A company called Angelbird is working on bringing high-performance SSD solutions to the masses, specifically, user upgradeable PCI-Express SSD solution.
This is one of a pair of SSD announcements that came in on Tuesday. SSDs are all around us now and the product announcements are coming in faster and harder. The first one, is from a British company named Angelbird. Looking at the website announcing the specs of their product, it is on paper a very fast PCIe based SSD drive. Right up there with Fusion-io in terms of what you get for the dollars spent. I’m a little concerned however due to the reliance of an OS hosted in the firmware of the PCIe card. I would prefer something a little more peripheral like that the OS supports natively, rather than have the card become the OS. But this is all speculative until actual production or test samples hit the review websites and we see some kind of benchmarks from the likes of Tom’s Hardware or Anandtech.
From MacNN|Electronista:
Iomega threw itself into external solid-state drives today through the External SSD Flash Drive. The storage uses a 1.8-inch SSD that lets it occupy a very small footprint but still outperform a rotating hard drive:
The second story covers a new product from Iomega where we have for the first time an external SSD from a mainstream manufacturer. Price is at premium compared to the performance, but if you like the looks you’ll be willing to pay. It’s not bad speeds for reading and writing, but it’s not the best compared to the amount of money you’re paying. And why do they still use a 2.5″ external case if it’s internally a 1.8″ drive? Couldn’t they shrink it down to the old Firefly HDD size from back in the day? It should be the smaller.
At an IDF keynote, Intel launched “Tunnel Creek,” a new Atom E600 SoC processor. One particular processor detailed is codenamed “Stellarton,” which consists of the Atom E600 processor paired with an Altera FPGA on a multi-chip package that provides additional flexibility for customers who want to incorporate proprietary I/O or acceleration.
Intel has announced a future product that pairs an Intel Atom processor with a Virtex FPGA. Now this is interesting, I just mentioned FPGA (field programmable gate array) chips and out of the blue Intel has summoned the same chip and married it to a little Atom core processor. They say it could be used as an accelerator of some sort. I’m wondering what specifically they had in mind (something very esoteric and niche like a TCP/IP offload processor). I would like to see some touting of its possible uses and not just say, “We want to see what happens.” Unfortunately the way the competition works in Consumer Electronics, you never tell people what’s inside. You let folks like iFixit do a teardown and put pictures up. You let industry websites research all the chips and what they cost, estimate the ones that are custom Integrated Circuits and report the cost to manufacture the device. That’s what they do with every Apple iPhone these days.
It would be cool if Intel could also sell this as a development kit for Stellarton’s users. Keep the price high enough to prevent people from releasing product based just on the kit’s CPU, but low enough to get people to try out some interesting projects. I’m guessing it would be a great tool to use for video transcoding, Mux/DeMuxing for video streams, etc. If anyone does release a shipping product thought it would be cool if they put the “Stellarton Inside” logo, so we know that FPGAs are doing the heavy lifting. The other possibility Intel mentions is to use the FPGA as a proprietary I/O so possibly like an Infiniband network interface? I still have hopes it’s used in the Consumer Electronics world.
I remember when I first saw the Verizon Wireless commercial featuring the Layar Reality Browser. It looked like something out of a science fiction movie. When my student web coordinator came in to the office with her iPhone, I asked her if she had ever heard of “Layar.” She had not heard of it so we downloaded it from the App Store. I was amazed at how the app used the phone’s camera, GPS and Internet access to create a virtual layer of information over the image being displayed by the phone. It was my first experience with an augmented reality application.
It’s nice to know Layar is getting some wider exposure. When I first wrote about it last year, the smartphone market was still somewhat small. And Layar was targeting phones that already had GPS built-in which the Apple iPhone wasn’t quite ready to allow access to in its development tools. Now the iPhone and Droid are willing participants in this burgeoning era of Augmented Reality.
The video in the article is from Droid and does a WAY better job than any of the fanboy websites for the Layar application. Hopefully real world performance is as good as it appears in the video. And I’m pretty sure the software company that makes it has continuously been updating it since it was first on the iPhone a year ago. Given the recent release of the iPhone 4 and it’s performance enhancements, I have a feeling Layar would be a cool, cool app to try out and explore.
Seagate is selling the drive today for $250. Cables to add new interfaces or support vary from $20 to $50. Internal drives are expected in the future but may wait until more systems can properly boot; using a larger than 2.1TB disk as a boot drive requires EFI firmware that most Windows PCs don’t have.
No doubt the internal version known as Constellation is still to be released. And take note EFI or Extensible Firmware Interface is the one thing differentiating Mac desktops from the large mass of Wintel desktops now on the market. Dell, HP, IBM, Acer, Asus, etc. are all wedded still to the old Intel BIOS based motherboard architecture. Mac along adopted EFI and has used it consistently since it first adopted Intel chips for its computer products. Now the necessity of EFI is becoming embarrassingly clear. Especially for the gamer fanboys out there who must have the largest hard drives on the market. Considering the size of these drives it’s amazing to think you could pack 4 of these into a Mac Pro desktop, and get 12TB of storage all internally connected.
Regarding the internals of the drive itself. Some speculation in this article included a suggestion that this hard drive used 4 platters total to reach 3GB of storage. Computing how many GBytes per platter this would require puts the density at 750 Gbytes/platter. This would mark a significant increase over the more common 640Gbytes/platter in currently shipping. In fact in a follow-up to this original announcement yesterday Seagate has announced it is using a total of 5 platters in this external hard drive. Which computes to 600 Gbytes/platter which is more inline with currently shipping single platter drives and even slightly less dense the the 640 GByte drives that are at the top of the storage density scale.