Blog

  • I’m Posting every week in 2011!

    I’ve decided I want to blog more. Rather than just thinking about doing it, I’m starting right now. I will be posting on this blog once a week for all of 2011.

    I know it won’t be easy, but it might be fun, inspiring, awesome and wonderful. Therefore I’m promising to make use of The DailyPost, and the community of other bloggers with similiar goals, to help me along the way, including asking for help when I need it and encouraging others when I can.

    If you already read my blog, I hope you’ll encourage me with comments and likes, and good will along the way.

    Signed,

    Wing Commander L.E. Pooper

  • Next-Gen SandForce Controller Seen on OCZ SSD

    Image representing SandForce as depicted in Cr...
    Image via CrunchBase

    Last week during CES 2011, The Tech Report spotted OCZ’s Vertex 3 Pro SSD–running in a demo system–using a next-generation SandForce SF-2582 controller and a 6Gbps Serial ATA interface. OCZ demonstrated its read and write speeds by running the ATTO Disk Benchmark which clearly showed the disk hitting sustained read speeds of 550 MB/s and sustained write speeds of 525 MB/s.

    via Next-Gen SandForce Controller Seen on OCZ SSD.

    Big news, test samples of the SandForce SF-2000 series flash memory controllers are being shown in products demoed at the Consumer Electronics Shows. And SSDs with SATA interfaces are testing through the roof. The numbers quoted for a 6GB/sec. SATA SSD are in the 500+GB/sec. range. Previously you would need to choose a PCIe based SSD drive from OCZ or Fusion-io to get anywhere near that high of  speed sustained. Combine this with the future possibility of SF-2000 being installed on future PCIe based SSDs and there’s no telling how much the throughput will scale. If four of the Vertex drives were bound together as a RAID 0 set with SF-2000 drive controllers managing it, is it possible to see a linear scaling of throughput. Could we see 2,000 MB/sec. on PCIe 8x SSD cards? And what would be the price on such a card fully configured with 1.2 TB of SSD drives? Hard to say what things may come, but just the thought of being able to buy retail versions of these makes me think a paradigm shift is in the works that neither Intel nor Microsoft are really thinking about right now.

    One comment on this article as posted on the original website, Tom’s Hardware, included the observation that the speeds quoted for this SATA 6GBps drive are approaching the memory bandwidth of several generations old PC-133 DRAM memory chips. And as I have said previously, I still have an old first generation Titanium Powerbook from Apple that uses that same memory chip standard PC-133. So given that SSD hard drives are fast approaching the speed of somewhat older main memory chips I can only say we are fast approaching a paradigm shift in desktop and enterprise computing. I dub thee, the All Solid State (ASS) era where no magnetic or rotating mechanical media enter into the equation. We run on silicon semiconductors from top to bottom, no Giant Magneto-Resistive technology necessary. Even our removable media are flash memory based USB drives we put in our pockets and walk around with on key chains.

  • CES 2011: Corsair Performance Series 3 SSD Benchmarks – AnandTech :: Your Source for Hardware Analysis and News

    Image representing SandForce as depicted in Cr...
    Image via CrunchBase

    The next wave of high end consumer SSDs will begin shipping this month, and I believe Corsair may be the first out the gate. Micron will follow shortly with its C400 and then we’ll likely see a third generation offering from Intel before eventually getting final hardware based on SandForce’s SF-2000 controllers in May.

    via CES 2011: Corsair Performance Series 3 SSD Benchmarks – AnandTech :: Your Source for Hardware Analysis and News.

    This just in from Consumer Electronics Show in Las Vegas, via Anandtech. SandForce SF-2000 scheduled to drop in May of this year. Get ready as you will see a huge upsurge in releases of new SSD products attempting to best one another in the sustained Read/Write category. And I’m not talking just SSDs but PCIe based cards with SSD RAIDs embedded on them communicating through a 2 Lane 8X PCI Express interface. I’m going to take a wild guess and say you will see products fitting this description easily hitting 700 to 900 MB/s sustained Read and Write. Prices will be on the top end of the scale as even the current shipping products all fall in to the $1200 to $1500 range. Expect the top end to be LSI based products for $15,000 or third party OEM manufacturers who might be willing to sell a fully configured 1TByte card for maybe ~$2,000. After the SF-2000 is released, I don’t know how long it will take for designers to prototype and release to manufacturing any new designs incorporating this top of the line SSD flash memory controller. It’s possible as the top end continues to increase in performance current shipping product might start to fall in price to clear out the older, lower performance designs.

  • 2010 in review

    The stats helper monkeys at WordPress.com mulled over how this blog did in 2010, and here’s a high level summary of its overall blog health:

    Healthy blog!

    The Blog-Health-o-Meter™ reads Fresher than ever.

    Crunchy numbers

    Featured image

    A helper monkey made this abstract painting, inspired by your stats.

    A Boeing 747-400 passenger jet can hold 416 passengers. This blog was viewed about 6,300 times in 2010. That’s about 15 full 747s.

     

    In 2010, there were 56 new posts, growing the total archive of this blog to 229 posts. There were 5 pictures uploaded, taking up a total of 154kb.

    The busiest day of the year was January 5th with 155 views. The most popular post that day was Apple web tablet on the way???.

    Where did they come from?

    The top referring sites in 2010 were planet3dnow.de, google.com, en.wordpress.com, facebook.com, and search.aol.com.

    Some visitors came searching, mostly for virtual reality, america’s test kitchen chili, america’s test kitchen chili recipe, mower blade sharpening equipment, and robert venturi.

    Attractions in 2010

    These are the posts and pages that got the most views in 2010.

    1

    Apple web tablet on the way??? July 2009

    2

    America’s Test Kitchen Chili Recipe January 2007

    3

    GPU accelerated H.264 encoding June 2008

    4

    Which way the wind blows: Flash Memory in the Data Center March 2010
    2 comments

    5

    Learning from Las Vegas, Learning from Levittown October 2008
    2 comments

  • Micron’s ClearNAND: 25nm + ECC

    Image representing Intel as depicted in CrunchBase
    Intel is a partner wish Micron

    Micron’s ClearNAND: 25nm + ECC, Combats Increasing Error Rates – AnandTech

    This is a really good technical article on attempts made by Micron and Intel to fix read/write errors in their Solid State memory based on Flash memory chips. Each revision of their design and materials for manufacture helps decrease the size of the individual memory cells on the flash memory chip however as the design rules (the distance between the wires) decrease, random errors increase. And the materials themselves suffer from fatigue with each read and write cycle. The fatigue is due in no small part (pun intended) on the size, specifically thickness of some layers in the sandwich that make up a flash memory cell. Thinner materials just wear out quicker. Typically this wearing out was addressed by adding extra unused memory cells that could act as a spare memory cell whenever one of them finally gave up the ghost, stopped working altogether. Another technique is to spread reads/writes over an area much greater than (sometimes 23% bigger) than the size of the storage on the outside of the packing. This is called wear levelling and it’s like rotating your tires to ensure they don’t start to get bare patches on them too quickly.

    All these techniques will only go so far as the sizes and thickness continue to shrink. So taking a chapter out of the bad old days of computing, we are back into Error Correcting Codes or ECC. When memory errors were common and you needed to guarantee your electronic logic was not creating spontaneous errors, bits of data called parity bits would be woven into all the operations to insure something didn’t accidentally flip from being a 1 to a 0. ECC memory is still widely used in data center computers that need to guarantee the spontaneous bits don’t get flipped by say, a stray cosmic ray raining down upon us. Now however ECC is becoming the next tool after spare memory cells and wear leveling to insure flash memory can continue to grow smaller and still be reliable.

    Two methods in operation today are to build the ECC memory controllers into the Flash memory modules themselves. This raises the cost of the chip, but lowers the cost to the manufacturer of a Solid State Disk or MP3 player. They don’t have to add the error correction after the fact or buy another part and integrate it into their design. The other more ‘state of the art’ method is to build the error correction into the Flash memory controller (as opposed to the memory cells), providing much more leeway in how it can be implemented, updated over time. As it turns out the premier manufacturer/designer of Flash memory controllers SandForce already does this with the current shipping version of their SF-1200 Flash memory controller. SandForce still has two more advanced controllers yet to hit the market, so they are only going to become stronger if they have already adopted ECC into their current shipping product.

    Which way the market chooses to go will depend on how low the target price is for the final shipping product. Low margin, high volume goods will most likely go with no error correction and take their chances. Other higher end goods may adopted the embedded ECC from Micron and Intel. Top of the line data center purchasers will not stray far from the cream of the crop, high margin SandForce controllers as they are still providing great performance/value even in their early generation products.

  • 450mm chip wafers | Electronista

    Image:Wafer 2 Zoll bis 8 Zoll.jpg uploaded by ...
    Image via Wikipedia

    Intel factory to make first 450mm chip wafers | Electronista.

    Being a student of the history of technology I know that the silicon semiconductor industry has been able to scale production according to Moore’s Law. However apart from the advances in how small the transistors can be made (the real basis of Moore’s Law), the other scaling factor has been the size of the wafers. Back in the old days silicon crystals had to be drawn out from a furnace at a very even steady rate which forced them to be thin cylinders 1-2″ in diameter. However as techniques improved (including a neat trick where the crystal was re-melted to purify it) the crystals increase in diameter to a nice 4″ size that helped bring down costs. Then came the big migration to 6″ wafers, 8″ and now the 300mm wafer (roughly 12″). Now Intel is still on its freight train to further bring down costs by moving the wafers up to the next largest size (450mm) and is stilling shrinking the parts (down to an unbelievably skinny 22nm in size). As the wafers continue to grow, the cost of processing equipment goes up and the cost of the whole production facility will too. The last big price point for a new production fab for Intel was always $2Billion. There may be multiple production lines in that Fab, but you needed to always have upfront that required money in order to be competitive. And Intel was more than competitive, it could put 3 lines into production in 3 years (blowing the competition out of the water for a while) and make things very difficult in the industry.

    Where things will really shake up is in the Flash memory production lines. The size of the design rulings for current flash memory chips at Intel is right around 22nm. Intel and Samsung both are trying to shrink down the feature sizes of all the circuits on their Single and Multi-Level Flash memory chips. Add to this the stacking of chips into super sandwiches and you find they can glue together 8 of their 8Gbyte chips, making for a single very thin 64Gbyte memory chip. This chip is then mated up to a memory controller and voila, the iPhone suddenly hits 64Gbytes of storage for all your apps and mp4’s from iTunes. Similarly on the hard drive end of the scale things will also wildly improve. Solid State Disk capacities should creep upwards further (beyond the top of the line 512Gbyte SSDs) as will the PCI Express based storage devices (probably doubling in capacity to 2 TeraBytes) after 450mm wafers take hold across the semiconductor industry. So it’s going to be a big deal if Chinese, Japanese and American companies get on the large silicon wafer bandwagon.

  • links for 2010-12-11

  • links for 2010-12-03

  • Bob Slydell: What would you say, Ya DO Here?

    I watched this video for the second time the  day before Thanksgiving. I agree with it completely, not to make fun of where I work. I will admit in the past I have been juvenile and overly idealistic in my beliefs about the role of managers. We all want to do well I think, but still there’s more than a little truth to the criticism that people get more done outside regular office hours. I used to stay long after our office would close to get all the work done I had put off during the day simply because I didn’t want to lose my place or be interrupted. It really does call into question the logic of The Office, and what is being accomplished in an 8 hour interval each day. And it also calls into question what Work really is. I always just assumed the interruptions were the work, in spite of watching the video, I still feel that is true.

  • Hitachi GST ends STEC’s monopoly • The Register

    Hitachi GST flash drives are hitting the streets and, at last, ending STEC’s monopoly in the supply of Fibre Channel interface SSDs.

    EMC startled the enterprise storage array world by embracing STEC SSDs (solid state drives) in its arrays last year as a way of dramatically lowering the latency for access to the most important data in the arrays. It has subsequently delivered FAST automated data movement across different tiers of storage in its arrays, ensuring that sysadms don’t have to involved in managing data movement at a tedious and time-consuming level.

    via Hitachi GST ends STEC’s monopoly • The Register.

    In the computer world the data center is often the measure of all things in terms of speed and performance. Time was, the disk drive interface of choice was the SCSI drive and then it’s higher speed evolutions Fast/Wide UltraSCSI. But then a new interface hit that used fibre optic cables to move storage out of the computer box to a separate box that managed all the hard drives in one spot and this was called a Storage Array. The new connector/cable combo was named Fibre Channel and it was fast, fast, fast. It become the absolute brand name off all vendors trying to sell more and more hard drives into the data center. Newer evolved versions of Fibre Channel came to market, each one slightly faster than the rest. And eventually Fibre Channel was built right into the hard drives themselves, so that you could be assured the speed was native Fibre Channel 3Gigabytes per second from one end to the other. But Fibre Channel has always been prohibitively expensive though a lot of it has been sold over the years. Volume has not brought down the price of Fibre Channel one bit in the time that it’s been the most widely deployed disk drive interface. A few competitors have cropped up the old Parallel ATA and Serial ATA drives from the desktop market have attempted to compete. And a newer SCSI drive interface called Serial Attached SCSI is now seeing some wider acceptance. However the old guard who are mentally and emotionally attached to their favorite Fibre Channel drive interface are not about to give up even has spinning disk speeds have been trumped by the almighty Flash memory based solid state drive (SSD). And a company named STEC knew it could sell a lot of SSDs if only someone could put a Fibre Channel interface on the circuit board, allaying any fears of the Fibre Channel adherents that they needed to evolve and change.

    Yes it’s true STEC was the only game in town for what I consider the Fibre Channel legacy interface in old-line Storage Array manufacturers. They have sold tons of their drives to third parties who package up their wares into turnkey ‘Enterprise’ solutions for drive arrays and cache controllers (all of which just speed up things). And being the first-est with the most-est is a good business strategy until the second source of your product comes online. So it’s always a race to sell as much as you can until the deadline hits and everyone rushes to the second source. Here now is Hitachi’s announcement they are now manufacturing an SSD with a Fibre Channel interface onboard for the Enterprise data center customers.