Tag: DIMM

  • Follow-Up – EETimes on SanDisk UltraDIMMs

    Image representing IBM as depicted in CrunchBase
    Image via CrunchBase

    http://www.eetimes.com/document.asp?doc_id=1320775

    “The eXFlash DIMM is an option for IBM‘s System x3850 and x3950 X6 servers providing up to 12.8 TB of flash capacity. (Although just as this story was being written, IBM announced it was selling its x86 server business to Lenovo for $2.3 billion).”

    Sadly it seems the party is over before it even got started in the sales and shipping of UltraDIMM equipped IBM x86 servers. If Lenovo snatches up this product line, I’m sure all the customers will still be perfectly happy but I worry about that level of innovation and product testing that led to the introduction of UltraDIMM may be slowed.

    I’m not criticizing Lenovo for this, they have done a fine job taking over the laptops and desktop brand from IBM.  The motivation to keep on creating new, early samples of very risky and untried technologies seems to be more IBM’s interest in maintaining it’s technological lead in the data center. I don’t know how Lenovo figures into that equation. How much will Lenovo sell in the way of rackmount servers like the X6 line? And just recently there’s been rumblings that IBM wants to sell off it’s long history of doing semi-conductor manufacturing as well.

    It’s almost too much to think R&D would be given up by IBM in semi-conductors. Outside of Bell Labs, IBM’s fundamental work in this field brought things like silicon on insulator, copper interconnects and myriad other firsts to ever smaller, finer design rules. While Intel followed it’s own process R&D agenda, IBM went its own way too always trying to find advantage it’s in inventions. Albeit that blistering pace of patent filings means they will likely never see all the benefits of that Research and Development. At best IBM can only hope to enforce it’s patents in a Nathan Myhrvold like way, filing law suits on all infringers, protecting it’s intellectual property. That’s going to be a sad day for all of us who marveled at what they demoed, prototyped and manufactured. So long IBM, hello IBM Global Services.

    Enhanced by Zemanta
  • Single-chip DIMM offers low-power replacement for sticks of RAM | ExtremeTech

    A 256Kx4 Dynamic RAM chip on an early PC memor...
    Image via Wikipedia

    Invensas, a subsidiary of chip microelectronics company Tessera, has discovered a way of stacking multiple DRAM chips on top of each other. This process, called multi-die face-down packaging, or xFD for short, massively increases memory density, reduces power consumption, and should pave the way for faster and more efficient memory chips.

    via Single-chip DIMM offers low-power replacement for sticks of RAM | ExtremeTech.

    Who says there’s no such thing as progress? Apart from the DDR memory bus data rates moving from DDR-3 to DDR-4 soon what have you read that was significantly different, much less better than the first gen DDR DIMMS from years ago? Chip stacking is de rigeur for manufacturers of Flash memory especially in mobile devices with limited real estate on the motherboards. This packaging has flowed back into the computer market very handily and has lead to small form factors in all the very Flash memory devices. Whether it be, Thumb drives, or aftermarket 2.5″ Laptop Solid State Disks or embedded on an mSATA module everyone’s benefiting equally.

    Wither stacking of RAM modules? I know there’s been some efforts to do this again for the mobile device market. But any large scale flow back into the general computing market has been hard to see. I’m hoping this announcement Invensas is a real shipping product eventually and not an attempt to stake a claim on intellectual property that will take the form of lawsuits against current memory designers and manufacturers. Stacking is the way to go, even if it never can be used in say a CPU, I would think clock speeds and power savings requirements on RAM modules might be sufficient to allow some stacking to occur. And if the memory access speeds improve at the same time, so much the better.

  • Viking Modular plugs flash chips into memory sockets • The Register

    The 536,870,912 byte (512×2 20 ) capacity of t...
    Image via Wikipedia

    What a brilliant idea: put flash chips into memory sockets. Thats what Viking Modular is doing this with its SATADIMM product.

    via Viking Modular plugs flash chips into memory sockets • The Register.

    This sounds like an interesting evolution of the SSD type of storage. But, I don’t know if there is a big advantage forcing a RAM memory controller to be the bridge to a Flash Memory controller. In terms of bandwidth, the speed seems comparable to a 4x PCIe interface. I’m thinking now of how it might compare to PCIe based SSD from OCZ or Fusion-io. It seems like the advantage is still held by PCIe in terms of total bandwidth and capacity (above 500MB/sec and 2Terabytes total storage). It maybe a slightly lower cost, but the use of Single Level Cell Flash memory chips raises the cost considerably for any given size of storage, and this product from Viking uses the Single Level Cell flash memory. I think if this product ships, it will not compete very well against products like consumer level SSDs, PCIe SSDs, etc. However if they continue to develop the product and evolve it, there might be a niche where it can be performance or price competitive.