AnandTech | Intel SSD DC P3700 Review: The PCIe SSD Transition Begins with NVMe

We don’t see infrequent blips of CPU architecture releases from Intel, we get a regular, 2-year tick-tock cadence. It’s time for Intel’s NSG to be given the resources necessary to do the same. I long for the day when we don’t just see these SSD releases limited to the enterprise and corporate client segments, but spread across all markets – from mobile to consumer PC client and of course up to the enterprise as well.

via AnandTech | Intel SSD DC P3700 Review: The PCIe SSD Transition Begins with NVMe.

Big news in the SSD/Flash memory world at Computex in Taipei, Taiwan. Intel has entered the fray with Samsung and SandForce issuing a fully NVMe compliant set of drives running on PCIe cards. Throughputs are amazing, but the prices are overly competitive. You can enter the market for as low as $600 for a 400GB PCIe card running as an NVMe compliant drive. On Windows Server 2012 R2 and Windows 8.1 you get native support for NVMe drives. This is going to get really interesting. Especially considering all the markets and levels of consumers within the market. On the budget side is the SATA Express interface which is an attempt to factor out some of the slowness inherent in SSDs attached to SATA bus interfaces. Then there’s M.2 which is the smaller form factor PCIe based drive interface being adopted by manufacturers making light and small form factor tablets and laptops. That is a big jump past SATA altogether and also has a speed bump associated with it as it communicates directly with the PCIe bus. Last and most impressive of all is the NVMe devices announced by Intel with yet a further speed bump as it’s addressing multiple data lanes on PCI Express. Some concern trolls in the gaming community are quick to point out the data lanes are being lost to I/O when they already are maxing them out with their 3D graphics boards.

The route forward it seems would be Intel motherboard designs with a PCIe 3 interface with the equivalent data lanes for two full speed 16x graphics cards, but using that extra 16x lane to devote to I/O instead or maybe a 1.5X arrangement with a fully 16X lane and 2 more 8X lanes to handle regular I/O plus a dedicated 8X NVMe interface? It’s going to require some reengineering and BIOS updating no doubt to get all the speed out of all the devices simultaneously. That’s why I would also like to remind readers of the Flash-DIMM phenomenon as well sitting out there on the edges in the high speed, high frequency trading houses in the NYC metro area. We haven’t seen nor heard much since the original product announcement from IBM for the X6-series servers and the options for Flash-DIMMs on that product line. Smart Memory Technology (the prime designer/manufacturer of Flash-DIMMs for SanDisk) has now been bought out by SanDisk. Again now word on that product line now. Same is true for the Lenovo takeover of IBM’s Intel server product line (of which the X6-series is the jewel in the crown). Mergers and acquisitions have veiled and blunted some of these revolutionary product announcements, but I hope eventually that Flash-DIMMs see the light of day and gain full BIOS support and eventually make it into the Desktop computer market. As good as NVMe is going forward, I think we need too a mix of Flash-DIMM to see the full speed of the multi-core X86 Intel chips.

Advertisement

Posted

in

, , ,

by

Tags:

%d bloggers like this: