Category: wintel

Windows news related blogs

  • AnandTech – Microsoft Provides Windows on ARM Details

    7 by Steven Sinofsky (President of Windows Div...
    Image via Wikipedia

    As reported by Andrew Cunningham for Anandtech: Weve known that Microsoft has been planning an ARM-compatible version of Windows since well before we knew anything else about Windows 8, but the particulars have often been obscured both by unclear signals from Microsoft itself and subsequent coverage of those unclear signals by journalists. Steven Sinofsky has taken to the Building Windows blog today to clear up some of this ambiguity, and in doing so has drawn a clearer line between the version of Windows that will run on ARM, and the version of Windows that will run on x86 processors.

    via AnandTech – Microsoft Provides Windows on ARM Details.

    That’s right ARM cpus are in the news again this time info for the planned version of Windows 8 for the mobile CPU. And it is a separate version of Windows OS not unlike Windows CE or Windows Mobile or Windows Embedded. They are all called Windows, but are very different operating systems. The product will be called Windows on ARM (WOA) and is only just now being tested internally at Microsoft with a substantial development and release to developers still to be announced.

    One upshot of this briefing from Sinofsky was the mobile-centric Metro interface will not be the only desktop available on WOA devices. You will also be able to use the traditional looking Windows desktop and not incur a big battery power performance hit. Which makes it a little more palatable to a wider range of users no doubt who might consider buying a phone or tablet or Ultrabook running an ARM cpu running the new Windows 8 OS. Along the same lines there will be a version of Office apps that will also run on WOA devices including the big three Word, Excel and Powerpoint. These versions will be optimized for mobile devices with touch interfaces which means you should buy the right version of Office for your device (if it doesn’t come pre-installed).

    Lastly the optimization and linking to specially built Windows on ARM devices means you won’t be able to install the OS on just ‘any’ hardware you like. Similar to Windows Mobile, you will need to purchase a device designed for the OS and most likely with a version pre-installed from the factory. This isn’t like a desktop OS built to run on many combos of hardware with random devices installed, it’s going to be much more specific and refined than that. Microsoft wants to really constrain and coordinate the look and feel of the OS on many mobile devices so that an average person can expect it to work similarly and look similar no matter who the manufacturer of the device will be. One engineering choice that is going to assist with this goal is an attempt to address the variations in devices by using so-called “Class Drivers” to support the chipsets and interfaces in a WOA device. This is a less device specific way of support say a display panel, keyboard without having to know every detail. A WOA device will have to be designed and built to a spec provided by Microsoft for which then it will provide a generic ‘class driver’ for that keyboard, display panel, USB 3.0 port, etc. So unlike Apple it won’t just be a limited set of hardware components necessarily, but they will have to meet the specs to be supported by the Windows on ARM OS. This no doubt will make it much easier for Microsoft to keep it’s OS up to date as compared to say in the Google Android universe where the device manufacturers have to provide the OS updates (which in fact is not often as they prefer people to upgrade their device to get the new OS releases).

  • The PC is dead. Why no angry nerds? :: The Future of the Internet — And How to Stop It

    Famously proprietary Microsoft never dared to extract a tax on every piece of software written by others for Windows—perhaps because, in the absence of consistent Internet access in the 1990s through which to manage purchases and licenses, there’d be no realistic way to make it happen.

    via The PC is dead. Why no angry nerds? :: The Future of the Internet — And How to Stop It.

    While true that Microsoft didn’t tax Software Developers who sold product running on the Windows OS, a kind of a tax levy did exist for hardware manufacturers creating desktop pc’s with Intel chips inside. But message received I get the bigger point, cul-de-sacs don’t make good computers. They do however make good appliances. But as the author Jonathan Zittrain points out we are becoming less aware of the distinction between a computer and an applicance, and have lowered our expectation accordingly.

    In fact this points to the bigger trend of not just computers becoming silos of information/entertainment consumption no, not by a long shot. This trend was preceded by the wild popularity of MySpace, followed quickly by Facebook and now Twitter. All platforms as described by their owners with some amount of API publishing and hooks allowed to let in 3rd party developers (like game maker Zynga). But so what if I can play Scrabble or Farmville with my ‘friends’ on a social networking ‘platform’? Am I still getting access to the Internet? Probably not, as you are most likely reading what ever filters into or out of the central all-encompassing data store of the Social Networking Platform.

    Like the old World Maps in the days before Columbus, there be Dragons and the world ends HERE even though platform owners might say otherwise. It is an Intranet pure and simple, a gated community that forces unique identities on all participants. Worse yet it is a big brother-like panopticon where each step and every little movement monitored and tallied. You take quizzes, you like, you share, all these things are collection points, check points to get more data about you. And that is the TAX levied on anyone who voluntarily participates in a social networking platform.

    So long live the Internet, even though it’s frontier, wild-catting days are nearly over. There will be books and movies like How the Cyberspace was Won, and the pioneers will all be noted and revered. We’ll remember when we could go anywhere we wanted and do lots of things we never dreamed. But those days are slipping as new laws get passed under very suspicious pretenses all in the name of Commerce. As for me I much prefer Freedom over Commerce, and you can log that in your stupid little database.

    Cover of "The Future of the Internet--And...
    Cover via Amazon
  • AnandTech – Intel and Micron IMFT Announce Worlds First 128Gb 20nm MLC NAND

    English: NAND Flash memory circuit
    Image via Wikipedia

    The big question is endurance, however we wont see a reduction in write cycles this time around. IMFTs 20nm client-grade compute NAND used in consumer SSDs is designed for 3K – 5K write cycles, identical to its 25nm process.

    via AnandTech – Intel and Micron IMFT Announce Worlds First 128Gb 20nm MLC NAND.

    If true this will help considerably in driving down cost of Flash memory chips while maintaining the current level of wear and performance drop seen over the lifetime of a chip. Stories I have read previously indicated that Flash memory might not continue to evolve using the current generation of silicon chip manufacturing technology. Performance drops occur as memory cells wear out. Memory cells were wearing out faster and faster as the wires and transistors got smaller and narrower on the Flash memory chip.

    The reason for this is memory cells have to be erased in order to free them up and writing and erasing take a toll on the memory cell each time one of these operations is performed. Single Level memory cells are the most robust, and can go through many thousands even millions of write and erase cycles before they wear out. However the cost per megabyte of Single Level memory cells make it an Enterprise level premium price level for Corporate customers generally speaking. Two Level memory cells are much more cost effective, but the structure of the cells makes them less durable than Single Level cells. And as the wires connecting them get thinner and narrower, the amount of write and erase cycles they can endure without failing drops significantly. Enterprise customers in the past would not purchase products specifically because of this limitation of the Two level memory cell.

    As companies like Intel and Samsung tried to make Flash memory chips smaller and less expensive to manufacture, the durability of the chips became less and less. The question everyone asked is there a point of diminishing return where smaller design rules, thinner wires is going to make chips so fragile? The solution for most manufacturers is to add spare memory cells, “over-providing” so that when a cell fails, you can unlock a spare and continue using the whole chip. The over -provisioning no so secret trick has been the way most Solid State Disks (SSDs) have handled the write/erase problem for Two Level memory cells. But even then, the question is how much do you over-provision? Another technique used is called wear-levelling where a memory controller distributes writes/erases over ALL the chips available to it. A statistical scheme is used to make sure each and every chip suffers equally and gets the same number of wear and tear apllied to it. It’s difficult balancing act manufacturers of Flash Memory and storage product manufacturers who consume those chips to make products that perform adequately, do not fail unexpectedly and do not cost too much for laptop and desktop manufacturers to offer to their customers.

    If Intel and Micron can successfully address the fragility of Flash chips as the wiring and design rules get smaller and smaller, we will start to see larger memories included in more mobile devices. I predict you will see iPhones and Samsung Android smartphones with upwards of 128GBytes of Flash memory storage. Similarly, tablets and ultra-mobile laptops will also start to have larger and larger SSDs available. Costs should stay about where they are now in comparison to current shipping products. We’ll just have more products to choose from, say like 1TByte SSDs instead of the more typical high end 512GByte SSDs we see today. Prices might also come down, but that’s bound to take a little longer until all the other Flash memory manufacturers catch up.

    A flash memory cell.
    Image via Wikipedia: Wiring of a Flash Memory Cell
  • Expect the First Windows 8 Snapdragon PC Late 2012

    Image representing Microsoft as depicted in Cr...
    Image via CrunchBase

    Qualcomm CEO Paul Jacobs, speaking during the San Diego semiconductor companys annual analyst day in New York, said Qualcomm is currently working with Microsoft to ensure that the upcoming Windows 8 operating system will run on its ARM-based Snapdragon SoCs.

    via Expect the First Windows 8 Snapdragon PC Late 2012.

    Image representing Qualcomm as depicted in Cru...
    Image via CrunchBase

    Windows 8 is a’comin’ down the street.  And I bet you’ll see it sooner rather than later. Maybe as early as June on some products. The reason of course is the Tablet Market is sucking all the air out of the room and Microsoft needs a win to keep the mindshare favorable to it’s view of the consumer computer market. Part of that drive is fostering a new level of cooperation with System on chip manufacturers who until now have been devoted to the mobile phone, smart phone market. Now everyone wants a great big Microsoft hope to conquer the Apple iPad in the tablet market. And this may be their only hope to accomplish that in the coming year.

    Forrester Research just 2 days ago however predicted the Windows 8 Tablet dead on arrival:

    Image representing Forrester Research as depic...
    Image via CrunchBase

    IDG News Service – Interest in tablets with Microsoft’s Windows 8 is plummeting, Forrester Research said in a study released on Tuesday.

    http://www.computerworld.com/s/article/9222238/Interest_waning_on_Windows_8_tablet_Forrester_says

    Key to making a mark in the tablet computing market is content, content, content. Performance and specs alone will not create a Windows 8 Tablet market in what is an Apple dominated tablet marketplace, as the article says. It also appears previous players in the failed PC Tablet market will make a valiant second attempt this time using Windows 8 (I’m thinking Fujitsu, HP and Dell according to this article).

    Enhanced by Zemanta
  • Single-chip DIMM offers low-power replacement for sticks of RAM | ExtremeTech

    A 256Kx4 Dynamic RAM chip on an early PC memor...
    Image via Wikipedia

    Invensas, a subsidiary of chip microelectronics company Tessera, has discovered a way of stacking multiple DRAM chips on top of each other. This process, called multi-die face-down packaging, or xFD for short, massively increases memory density, reduces power consumption, and should pave the way for faster and more efficient memory chips.

    via Single-chip DIMM offers low-power replacement for sticks of RAM | ExtremeTech.

    Who says there’s no such thing as progress? Apart from the DDR memory bus data rates moving from DDR-3 to DDR-4 soon what have you read that was significantly different, much less better than the first gen DDR DIMMS from years ago? Chip stacking is de rigeur for manufacturers of Flash memory especially in mobile devices with limited real estate on the motherboards. This packaging has flowed back into the computer market very handily and has lead to small form factors in all the very Flash memory devices. Whether it be, Thumb drives, or aftermarket 2.5″ Laptop Solid State Disks or embedded on an mSATA module everyone’s benefiting equally.

    Wither stacking of RAM modules? I know there’s been some efforts to do this again for the mobile device market. But any large scale flow back into the general computing market has been hard to see. I’m hoping this announcement Invensas is a real shipping product eventually and not an attempt to stake a claim on intellectual property that will take the form of lawsuits against current memory designers and manufacturers. Stacking is the way to go, even if it never can be used in say a CPU, I would think clock speeds and power savings requirements on RAM modules might be sufficient to allow some stacking to occur. And if the memory access speeds improve at the same time, so much the better.

  • OCZ Launches PCIe-Based HDD/SDD Hybrid Drive

    By bypassing the SATA bottleneck, OCZs RevoDrive Hybrid promises transfer speeds up to 910 MB/s and up to 120,000 IOPS 4K random write. The SSD aspect reportedly uses a SandForce SF-2281 controller and the hard drive platters spin at 5,400rpm. On a whole, the hybrid drive makes good use of the companys proprietary Virtualized Controller Architecture.

    via OCZ Launches PCIe-Based HDD/SDD Hybrid Drive.

    RevoDrive Hybrid PCIe
    Image from: Tom's Hardware

    Good news on the Consumer Electronics front, OCZ continues to innovate on the desktop aftermarket introducing a new PCIe Flash product that marries a nice 1TByte Hard Drive to a 100GB flash-based SSD. The best of both worlds all in one neat little package. Previously you might buy these two devices seperately, 1 average sized Flash drive and 1 spacious Hard drive. Then you would configure the Flash Drive as your System boot drive and then using some kind of alias/shortcut trick have the Hard drive as your user folder to hold videos, pictures, etc. This has caused some very conservative types to sit out and wait for even bigger Flash drives hoping to store everything on one logical volume. But what they really want is a hybrid of big storage and fast speed and that according to the press release is what the OCZ Hybrid Drive delivers. With a SandForce drive controller and two drives the whole architecture is hidden away along with the caching algorithm that moves files between the flash and hard drive storage areas. To the end user, they see but one big Hard drive (albeit installed in one of their PCI card slots), but experience the faster bootup times, faster application loading times. I’m seriously considering adding one of these devices into a home computer we have and migrating the bootdrive and user home directories over to that, using the current hard drives as the Windows backup device. I think that would be a pretty robust setup and could accommodate a lot of future growth and expansion.

  • Tilera throws gauntlet at Intels feet • The Register

    Upstart mega-multicore chip maker Tilera has not yet started sampling its future Tile-Gx 3000 series of server processors, and companies have already locked in orders for the chips.

    via Tilera throws gauntlet at Intels feet • The Register.

    Proof that sometimes  a shipping product doesn’t always make all the difference. Although it might be nice to tout performance of actual shipping product. What’s becoming more real is the power efficiency of the Tilera architcture core for core versus the Intel IA-64 architecture. Tilera can provide a much lower Thermal Design Point (TDM) per core than typical Intel chips running the same workloads. So Tilera for the win on paper anyways.

  • Intel readying MIC x64 coprocessor for 2012 • The Register

    Image representing Intel as depicted in CrunchBase
    Image via CrunchBase

    Thus far, Intels Many Integrated Core MIC is little more than a research project. Intel picked up the remnants of the failed “Larrabee” graphics card project and rechristened it Knights and put it solely in the service of the king of computing, the CPU.

    via Intel readying MIC x64 coprocessor for 2012 • The Register.

    Ahhh, alas poor ol’ Larrabee, we hardly knew ye. And yet, somehow your ghost will rise again, and again and again. I remember the hints at the 80 core cpu, which then fell to 64 cores, 40 cores and now just today I read this article to find out it is merely Larrabee and only has a grand total of (hold tight, are you ready for this shocker?) 32 cores. Wait what was that? Did you say 32 cores? Let’s turn back the page to May 15, 2009 where Intel announced the then new Larrabee graphics processing engine with a 32-core processor. That’s right, nothing (well maybe not nothing) has happened in TWO YEARS! Or very little has happened a few die shrinks, and now the upcoming 3D transistors (tri-gate) for the 22nm design revision for Intel Architecture CPUs. It also looks like they may have shuffled around the floor plan/layout of the first gen Larrabee CPU to help speed things up a bit. But, other than these incrementalist appointments the car looks vastly like the model year car from two years ago. Now, what we can also hope has improved since 2009 is the speed and efficiency of the compilers Intel’s engineers have crafted to accompany the release of this re-packaged Larrabee.

    Intel shows glimpse of 32-core Larrabee beast (Chris Mellor @ http://www.theregister.co.uk)

  • ARM server hero Calxeda lines up software super friends • The Register

    Company Logo
    Maker of the massively parallel ARM-based server

    via ARM server hero Calxeda lines up software super friends • The Register.

    Calxeda in the news again this week with some more announcements regarding its plans. Remembering recently to the last article I posted on Calxeda, this company boasts an ARM based server packing 120 cpus (each with four cores) into a 2U high rack (making it just 3-1/2″ tall *see note). With every evolution in hardware one must needs get an equal if not greater revolution in software. Which is the point of the announcement by Calxeda of its new software partners.

    It’s all mostly cloud apps, cloud provisioning and cloud management types of vendors. And with the partnership each company gets early access to the hardware Calxeda is promising to design, prototype and eventually manufacture. Both Google and Intel have poo-poohed the idea of using “wimpy processors” on massively parallel workloads claiming faster serialized workloads are still easier to manage through existing software/programming techniques. For many years as Intel has complained about the programming tools, it still has gone the multi-core/multi-thread route hoping to continue its domination by offering up ‘newer’ and higher performing products. So while Intel bad mouths parallelism on competing cpus it seems to be desperate to sell multi-core to willing customers year over year.

    Even as power efficient as those cores maybe Intel’s old culture of maximum performance for the money still holds sway. Even the most recent Ultra-low Voltage i-series cpus are still hitting about 17Watts of power for chips clocking in around 1.8Ghz (speed boosting up to 2.9Ghz in a pinch). Even if Intel allowed these chips to be installed into servers we’re stilling talking a lot of  Thermal Design Point (TDM) that has to be chilled to keep running.

  • Macintouch Reader Reports: User Interface Issues iOS/Lion

    Magic Mouse on MacBook Pro. Canon Rebel T1i wi...
    Image via Wikipedia

    Anyways, I predict a semi-chaos, where – for example- a 3 fingers swipe from left to right means something completely different in Apple than in any other platform. We are already seeing signs of this in Android, and in the new Windows 8.Also, users will soon need “cheat sheets” to remember the endless possible combinations.Would be interesting to hear other people’s thoughts.

    via User Interface Issues.

    After the big WWDC Keynote presentation by Steve Jobs et. al. the question I have too is what’s up with all the finger combos for swiping. In the bad old days people needed wire bound notebooks to tell them all about the commands to run their IBM PC. And who can forget the users of WordPerfect who had keyboard template overlays to remind themselves of the ‘menu’ of possible key combos (Ctrl/Alt/Shift). Now we are faced with endless and seemingly arbitrary combinations off finger swipes/pinches/flicks etc.

    Like other readers who responded to this question on the Macintouch message boards, what about the bad old days of the Apple 1 button mouse? Remember when Apple finally capitulated and provided two mice buttons (No?) well they did it through software. Just before the Magic Mouse hit town Apple provided a second mouse button (at long last) bringing the Mac inline for the first time with the Windows PC convention of left and right mouse buttons. How recently did this happen? Just two years ago maybe, Apple introduced the wired and wireless version of the Mighty Mouse? And even then it was virtual, not a literal real two button-ness experience either. Now we have the magic mouse with no buttons, no clicking. It’s one rounded over trackpad that accepts the Lionized gestures. To quote John Wayne, “It’s gettin’ to be Ri-goddamn-diculous”.

    So whither the haptic touch interface conventions of the future? Who is going to win the gesture arms race? Who is going to figure out less is more when it comes to gestures? It ain’t Apple.