Category: technology

General technology, not anything in particular

  • AnandTech – Some Thoughts on SandForces 3rd Generation SSD Controller

    Finally theres talk about looking at other interfaces in addition to SATA. Its possible that we may see a PCIe version of SandForces 3rd generation controller.

    via AnandTech – Some Thoughts on SandForces 3rd Generation SSD Controller.

    SandForce
    Image via Wikipedia

    Some interesting notes about future directions SandForce might take especially now that SandForce has been bought out by LSI. They are hard at work attempting to optimize other parts of their current memory controller technology (speeding up small random reads and writes). There might be another 2X performance gain to be had at least on the SSD front, but more importantly is the PCI Express market. Fusion-io has been the team to beat when it comes to integrating components and moving data across the PCIe interface. Now SandForce is looking to come out with a bona fide PCIe-SSD controller which up until now has been a roll-your own type affair. The engineering and design expertise of companies like Fusion-io were absolutely necessary to get a PCIe SSD card to market. Now that playing field too will be leveled somewhat and possibly now competitors will enter the market with equally good performance numbers

    But even more interesting than this wrinkle in the parts design for PCIe SSDs is the announcement earlier this month of Fusion-io’s new software interface for getting around the limits of File I/O on modern day OSes. Auto Commit Memory: “ACM is a software layer which allows developers to send and receive data stored on Fusion-io’s ioDrive cards directly to and from the CPU, rather than relying upon the operating system”(Link to The Verge article listed in my Fusion-io article). SandForce is up against a moving target if they hope to compete more directly with Fusion-io who is now investing in hardware AND software engineering at the same time. 1 Billion IOPS is nothing to sneeze at given the pace of change since SATA SSDs and PCIe SSDs hit the market in quantity.

  • Tilera | Wired Enterprise | Wired.com

    Tilera’s roadmap calls for its next generation of processors, code-named Stratton, to be released in 2013. The product line will expand the number of processors in both directions, down to as few as four and up to as many as 200 cores. The company is going from a 40-nm to a 28-nm process, meaning they’re able to cram more circuits in a given area. The chip will have improvements to interfaces, memory, I/O and instruction set, and will have more cache memory.

    via Tilera | Wired Enterprise | Wired.com.

    Image representing Wired Magazine as depicted ...
    Image via CrunchBase

    I’m enjoying the survey of companies doing massively parallel, low power computing products. Wired.com|Enterprise started last week with a look at SeaMicro and how the two principal founders got their start observing Google’s initial stabs at a warehouse sized computer. Since that time things have fractured somewhat instead of coalescing and now three big attempts are competing to fulfil the low power, massively parallel computer in a box. Tilera is a longer term project startup from MIT going back further than Calxeda or SeaMicro.

    However application of this technology has been completely dependent on the software. Whether it be OSes or Applications, they all have to be constructed carefully to take full advantage of the Tile processor architecture. To their credit Tilera has attempted to insulate application developers from some of the vagaries of the underlying chip by creating an OS that does the heavy lifting of queuing and scheduling. But still, there’s got to be a learning curve there even if it isn’t quite as daunting as say folks who develop applications for the super computers at National Labs here in the U.S. Suffice it to say it’s a non-trivial choice to adopt a Tilera cpu for a product/project you are working on. And the people who need a Tilera GX cpu for their app, already know all they need to know about the the chip in advance. It’s that kind of choice they are making.

    I’m also relieved to know they are continuing development to shrink down the design rules. Intel being the biggest leader in silicon semi-conductor manufacturing, continues to shrink its design, development and manufacturing design rules. We’re fast approaching a 20nm-18nm production line in both Oregon and Arizona. Both are Intel design fabrication plants and there not about to stop and take a breath. Companies like Tilera, Calxeda and SeaMicro need to do continuous development on their products to keep from being blind sided by Intel’s continuous product development juggernaut. So Tilera is very wise to shrink its design rule from 40nm down to 28nm as fast as it can and then get good yields on the production lines once they start sampling chips at this size.

    *UPDATE: Just saw this run through my blogroll last week. Tilera has announced a new chip coming in March. Glad to see Tilera is still duking it out, battling for the design wins with manufacturers selling into the Data Center as it were. Larger Memory addressing will help make the Tilera chips more competitive with Commodity Intel Hardware shops, and maybe we’ll see full 64bit memory extensions at some point as a follow on to the current 40bit address space extenstions currently being touted in this article from The Register.

    English: Block diagram of the Tilera TILEPro64...
    Image via Wikipedia
  • How Google Spawned The 384-Chip Server | Wired Enterprise | Wired.com

    SeaMicro’s latest server includes 384 Intel Atom chips, and each chip has two “cores,” which are essentially processors unto themselves. This means the machine can handle 768 tasks at once, and if you’re running software suited to this massively parallel setup, you can indeed save power and space.

    via How Google Spawned The 384-Chip Server | Wired Enterprise | Wired.com.

    Image representing Wired Magazine as depicted ...
    Image via CrunchBase

    Great article from Wired.com on SeaMicro and the two principle minds behind its formation. Both of these fellows were quite impressed with Google’s data center infrastructure at the points in time when they both got to visit a Google Data Center. But rather than just sit back and gawk, they decided to take action and borrow, nay steal some of those interesting ideas the Google Engineers adopted early on. However, the typical naysayers pull a page out of the Google white paper arguing against SeaMicro and the large number of smaller, lower-powered cores they use in the SM-10000 product.

    SeaMicro SM10000
    Image by blogeee.net via Flickr

    But nothing speaks of success more than product sales and SeaMicro is selling it’s product into data centers. While they may not achieve the level of commerce reached by Apple Inc., it’s a good start. What still needs to be done is more benchmarks and real world comparisons that reproduce or negate the results of Google’s whitepaper promoting their choice of off the shelf commodity Intel chips. Google is adamant that higher clock speed ‘server’ chips attached to single motherboards connected to one another in large quantity is the best way to go. However, the two guys who started SeaMicro insist that while Google’s choice for itself makes perfect sense, NO ONE else is quite like Google in their compute infrastructure requirements. Nobody has such a large enterprise or the scale Google requires (except for maybe Facebook, and possibly Amazon). So maybe there is a market at the middle and lower end of the data center owner’s market? Every data center’s needs will be different especially when it comes to available space, available power and cooling restrictions for a given application. And SeaMicro might be the secret weapon for shops constrained by all three: power/cooling/space.

    *UPDATE: Just saw this flash through my Google Reader blogroll this past Wednesday, Seamicro is now selling an Intel Xeon based server. I guess the market for larger numbers of lower power chips just isn’t strong enough to sustain a business. Sadly this makes all the wonder and speculation surrounding the SM10000 seem kinda moot now. But hopefully there’s enough intellectual property rights and patents in the original design to keep the idea going for a while. Seamicro does have quite a headstart over competitors like Tilera, Calxeda and Applied Micro. And if they can help finance further developments of Atom based servers by selling a few Xeons along the way, all the better.

  • Could MRAM Ultimately Replace DRAM? < PC World.in

    Everspin on Wednesday said its MRAM magnetoresistive random access memory is trickling into products that require reliable, fast non-volatile memory that can preserve data in the event of a power failure.

    via Could MRAM Ultimately Replace DRAM? < Other PC Hardware Components, Technology, RAM, Components, Technology < PC World India News < PC World.in.

    en:This is a simplified MRAM cell structure.
    Image via Wikipedia

    Magneto-Resistive RAM in the news

    I haven’t heard any product announcements in a while. But it appears Everspin is keeping the faith and shipping real products to real manufacturers. I couldn’t be happier that it’s now on the market and competing for some product designs head to head with RAM and Flash memory. But in this instance it’s really competing against a whole other main stream product; static RAM.

    The so-called SRAM was always used as a high speed read mostly cache that allowed a good sized buffer to stay close to the CPU. Static RAM caches were the easiest (but maybe not most cost effective) way to bump the speed of any Motorola or Intel cpu during their co-domination of the desktop market (Intel 386 and Motorola 680000). Stick an SRAM between the CPU and the motherboard, and voila 10-15% performance increase versus a straight through connection between CPU and the motherboard. And static RAM much like Flash based memory chips could also be used to hold data resident for many days powered down. But the cost versus Flash makes it much less competitive. However MRAM can also be used where you might have used a static RAM in the past. Current manufacturers are using it in place of static RAM in hard drive Host Bus Adaptors. This is not just a cost savings but a material savings as these days it is more common to back any mission critical drive electronics with a super-capacitor.

    With Magnetic RAMs you can skip including the super capacitor and let the persistence built-in to MRAM do the rest (no need for refreshes or write/re-writes in the background). It makes me wonder if you also went with a super-capacitor to back everything locally and a Magnetic RAM module as well how big a mess that might give them to manage. But from a risk management standing, how much extra or how much less risk would you incur using MRAM plus Super-capacitors in your Disk Controller? I’m sure the cost of manufacture might not warrant the extra effort, but it would still be cool to see a statistical analysis comparing this ‘belt and suspenders’ extravagant setup versus just MRAM or just Super-capacitors.

  • Everything You Thought You Knew About Learning Is Wrong | GeekDad | Wired.com

    “Because humans have unlimited storage capacity, having total recall would be a mess,” says Bjork. “Imagine you remembered all the phone numbers of all the houses you had ever lived in. When someone asks you your current phone number, you would have to sort it from this long list.” Instead, we forget the old phone numbers, or at least bury them far beneath the ease of recall we gift to our current number. What you thought were sworn enemies are more like distant collaborators.

    via Everything You Thought You Knew About Learning Is Wrong | GeekDad | Wired.com.

    Interesting Ideas, I’m hoping maybe to adopt some of them in my attempts to learn Japanese language.

  • Fusion-io demos billion IOPS server config • The Register

    Fusion-io has achieved a billion IOPS from eight servers in a demonstration at the DEMO Enterprise event

    Image representing Fusion-io as depicted in Cr...
    Image via CrunchBase

    in San Francisco.

    The cracking performance needed just eight HP DL370 G6 servers, running Linux 2.6.35.6-45 on two, 6-core Intel processors, 96GB RAM. Each server was fitted with eight 2.4TB ioDrive2 Duo PCIE flash drives; thats 19.2TB of flash per server and 153.6TB of flash in total.

    via Fusion-io demos billion IOPS server config • The Register.

    This is in a word, no mean feat. 1 Million IOPS was the target to beat not just 2 years ago for anyone attempting to buy/build their own Flash based storage from the top Enterprise Level manufacturers. So the bar has risen no less than 3 orders of magnitude higher than the top end from 1 year ago. Add to that the magic sauce of bypassing the host OS and using the Flash memory as just an enhanced large memory.

    This makes me wonder, how exactly does the Flash memory get used alongside the RAM memory pool?

    How do the Applications use the Flash memory, and how does the OS use it?

    Those are the details I think that no one else other than Fusion-io can provide as a value-add beyond the PCIe based flash memory modules itself. Instead of hardware being the main differentiator (drive controllers, Single Level Cells, etc.) Fusion-io is using a different path through the OS to the Flash memory. The File I/O system traditionally tied to hard disk storage and more generically ‘storage’ of some kind is being sacrificed. But I understand the logic, design and engineering of bypassing the overhead of the ‘storage’ route and redefining the Flash memory as another form of system memory.

    Maybe the old style Von Neumann architecture or Harvard architecture computers are too old school for this new paradigm of a larger tiered memory pool with DRAM and Flash memory modules consisting of the most important parts of the computer. Maybe disk storage could be used as a mere backup of the data held in the Flash memory? Hard to say, and I think Fusion-io is right to hold this info close as they might be able to make this a more general case solution to the I/O problems facing some customers (not just Wall Street type high frequency traders).

  • More PCI-express SSD cards coming to OS X | MacFixIt – CNET Reviews

    The card will use the Marvell 88SE9455 RAID controller that will interface with the SandForce 2200-based daughter cards that can be added to the main controller on demand. This will allow for user-configurable drive sizes from between 60GB and 2TB in size, allowing you to expand your storage as your need for it increases.

    via More PCI-express SSD cards coming to OS X | MacFixIt – CNET Reviews.

    OWC Logo
    Other World Computing

    I’m a big fan of Other World Computing (OWC) and have always marveled at their ability to create new products they brand on their own. In the article they talk about a new Mac compatible PCIe SSD. It sounds like an uncanny doppleganger to the Angelbird board announced about 2 years ago and started shipping last Fall 2011. The add-on sockets especially remind me of the ugpradable Angelbird board especially. There are not many PCIe SSD cards that have sockets for Flash memory modules and Other World Computing would be the second one I have seen since I’ve been commenting on these devices when they hit the consumer market. Putting sockets on the board makes it easier to come into the market at a lower price point for users where price is most important. However at the high end capacity is king for some purchasers of PCIe SSD drives. So the oddball upgradeable PCIe SSD fills a niche that’s for sure.

    Performance projections for this card are really good and typical of most competing PCIe SSD cards. So depending on your needs you might find this perfect. Price however is always harder to pin down. Angelbird sold a bare PCIe card with no SSDs for around $249. It came with 32GB onboard for that price. What was really nice was the card used SATA sockets set far enough apart to place full sized SSDs on the card without crowding each other. This brought the possibility of slowly upgrading to higher speed drives or larger capacity drives over time to the consumer market.

    Angelbird PCIe SSD
    Welcome to Wings from Angelbird – Mac comaptible PCIe SSD

    But what’s cooler still is Angelbird’s card allowed it to run under ANY OS, even Mac OS as it was engineered to be a a free standing computer with a large Flash memory attached to it. That allowed it to pre-boot into an embedded OS before handing over control to the Host OS whatever flavor it might be. I don’t know if the OWC card works similarly, but it does NOT use SATA sockets or provide enough room to plug in SSD drives. The plug-in modules for this device are mSATA style sockets used in tablets and netbook style computers. So the modules will most likely need to be purchased direct from OWC to peform capacity upgrades over the life of the PCIe card itself. Prices have not yet been set according to this article.

  • RE: Erics Archived Thoughts: Vigilance and Victory

    Erics Archived Thoughts: Vigilance and Victory.

    While I agree there might be a better technical solution to the DNS blocking adopted by SOPA and PIPA bills, less formal networks are in essence filling the gap. By this I mean the MegaUpload takedown that occurred yesterday at the the order of the U.S. Justice Department. Without even the benefit of SOPA or PIPA, they ordered investigations, arrests and takedowns of the whole MegaUpload enterprise. But what is interesting is the knock-on effects social networks had in the vacuum left by the DNS blocking. Within hours the DNS was replaced by it’s immediate pre-cursors. That’s right, folks were sending the IP addresses of available MegaUpload hosts by plain text in Tweet messages the world ’round. And given the announcement today that Twitter will be closing in on it’s 500 Million’th account being created I’m not too worried about a technical solution to DNS blocking. That too is already moot, by virtue of the the fact of social networking and simple numeric IP addresses. Long live IPv4 and the quadruple octets 255.255.255.xxx

  • AnandTech – AMD Radeon HD 7970 Review: 28nm And Graphics Core Next, Together As One

    Image representing AMD as depicted in CrunchBase
    Image via CrunchBase

    Quick Sync made real-time H.264 encoding practical on even low-power devices, and made GPU encoding redundant at the time. AMD of course isn’t one to sit idle, and they have been hard at work at their own implementation of that technology: the Video Codec Engine VCE.

    via AnandTech – AMD Radeon HD 7970 Review: 28nm And Graphics Core Next, Together As One.

    Intel’s QuickSync helped speed up the realtime encoding of H.264 video. AMD is striking back and has Hybrid Mode VCE operations that will speed things up EVEN MORE! The key to having this hit the market and get widely adopted of course is the compatibility of the software with a wide range of video cards from AMD. The original CUDA software environment from nVidia took a while to disperse into the mainstream as it had a limited number of graphics cards it could support when it rolled out. Now it’s part of the infrastructure and more or less provided gratis whenever you buy ANY nVidia graphics card today. AMD has to follow this semi-forced adoption of this technology as fast as possible to deliver the benefit quickly. At the same time the User Interface to this VCE software had better be a great design and easy to use. Any type of configuration file dependencies and tweaking through preference files should be eliminated to the point where you merely move a slider up and down a scale (Slower->Faster). And that should be it.

    And if need be AMD should commission an encoder App or a plug-in to an open source project like HandBrake to utilize the VCE capability upon detection of the graphics chip on the computer. Make it ‘just happen’ without the tempting early adopter approach of making a tool available and forcing people to ‘build’ a version of an open source encoder to utilize the hardware properly. Hands-off approaches that favor early adopters is going to consign this technology to the margins for a number of years if AMD doesn’t take a more activist role. QuickSync on Intel hasn’t been widely touted either so maybe it’s a moot point to urge anyone to treat their technology as an insanely great offering. But I think there’s definitely brand loyalty that could be brought into play if the performance gains to be had with a discreet graphics card far outpace the integrated graphics solution of QuickSync provided by Intel. If you can achieve a 10x order of magnitude boost, you should be pushing that to all the the potential computer purchasers from this announcement forward.

  • Maxeler Makes Waves With Dataflow Design – Digits – WSJ

    In the dataflow approach, the chip or computer is essentially tailored for a particular program, and works a bit like a factory floor.

    via Maxeler Makes Waves With Dataflow Design – Digits – WSJ.

    English: Altera Stratix IV EP4SGX230 FPGA on a PCB
    Image via Wikipedia

    My supercomputer can beat your supercomputer, and money is no object. FPGAs (Field Programmable Gate Arrays) are used most often in prototyping new computer processors. You can design a chip, then ‘program’ the FPGA to match the circuit design so that it can be verified. Verification is the process by which you do exhaustive tests on the logic and circuits to see if you’ve left anything out or didn’t get the timing right for the circuits that may run at different speeds within the chip itself. They are expensive niche products that chip design outfits and occasionally product manufacturers use to solve problems. Less often they might be used in data network gear to help classify and reroute packets in a data center and optimize performance over time.

    This by itself would be a pretty good roster of applications, but something near and dear to my heart is the use of FPGAs as a kind of reconfigurable processor. I am certain one day we will see the application of FPGA  in desktop computers. But until then, we’ll have to settle for using FPGAs as special purpose application accelerators in high volume trading and Wall Street type data centers. This article in WSJ is going to change a few opinions about the application of FPGAs for real computing tasks. The speedups quoted for different analysis and reports derived from the transactions show multiple orders of magnitude speedups. In extreme examples sometimes 1,000 times faster speed-ups occurred when using a fully optimized FPGA versus a general purpose CPU.

    When someone can tout 1,000X speedups everyone is going to take notice. And hopefully it won’t be simply a bunch of copycats trying to speed up their reports and management dashboards. There’s a renaissance out there waiting to happen with FPGAs and I still have hope I’ll see it in my lifetime.