Tilera | Wired Enterprise | Wired.com

Tilera’s roadmap calls for its next generation of processors, code-named Stratton, to be released in 2013. The product line will expand the number of processors in both directions, down to as few as four and up to as many as 200 cores. The company is going from a 40-nm to a 28-nm process, meaning they’re able to cram more circuits in a given area. The chip will have improvements to interfaces, memory, I/O and instruction set, and will have more cache memory.

via Tilera | Wired Enterprise | Wired.com.

Image representing Wired Magazine as depicted ...
Image via CrunchBase

I’m enjoying the survey of companies doing massively parallel, low power computing products. Wired.com|Enterprise started last week with a look at SeaMicro and how the two principal founders got their start observing Google’s initial stabs at a warehouse sized computer. Since that time things have fractured somewhat instead of coalescing and now three big attempts are competing to fulfil the low power, massively parallel computer in a box. Tilera is a longer term project startup from MIT going back further than Calxeda or SeaMicro.

However application of this technology has been completely dependent on the software. Whether it be OSes or Applications, they all have to be constructed carefully to take full advantage of the Tile processor architecture. To their credit Tilera has attempted to insulate application developers from some of the vagaries of the underlying chip by creating an OS that does the heavy lifting of queuing and scheduling. But still, there’s got to be a learning curve there even if it isn’t quite as daunting as say folks who develop applications for the super computers at National Labs here in the U.S. Suffice it to say it’s a non-trivial choice to adopt a Tilera cpu for a product/project you are working on. And the people who need a Tilera GX cpu for their app, already know all they need to know about the the chip in advance. It’s that kind of choice they are making.

I’m also relieved to know they are continuing development to shrink down the design rules. Intel being the biggest leader in silicon semi-conductor manufacturing, continues to shrink its design, development and manufacturing design rules. We’re fast approaching a 20nm-18nm production line in both Oregon and Arizona. Both are Intel design fabrication plants and there not about to stop and take a breath. Companies like Tilera, Calxeda and SeaMicro need to do continuous development on their products to keep from being blind sided by Intel’s continuous product development juggernaut. So Tilera is very wise to shrink its design rule from 40nm down to 28nm as fast as it can and then get good yields on the production lines once they start sampling chips at this size.

*UPDATE: Just saw this run through my blogroll last week. Tilera has announced a new chip coming in March. Glad to see Tilera is still duking it out, battling for the design wins with manufacturers selling into the Data Center as it were. Larger Memory addressing will help make the Tilera chips more competitive with Commodity Intel Hardware shops, and maybe we’ll see full 64bit memory extensions at some point as a follow on to the current 40bit address space extenstions currently being touted in this article from The Register.

English: Block diagram of the Tilera TILEPro64...
Image via Wikipedia
Advertisement

Posted

in

, , , ,

by

%d bloggers like this: