OCZ Reveals New Bootable PCIe SSD (quick comparison to Angelbird PCIe)

PCI Express slots (from top to bottom: x4, x16...
Image via Wikipedia

Box packaging for the RevoDrive
First version of the RevoDrive PCIe

Building upon the original 1st-generation RevoDrive, the new version boasts speeds up to 740 MB/s and up to 120,000 IOPS, almost three times the throughput of other high-end SATA-based solutions.

via OCZ Reveals New Bootable PCIe SSD.

One cannot make this stuff up, two weeks ago Angelbird announced its bootable PCI Express SSD. Late yesterday OCZ one of the biggest 3rd party after market makers of SSDs announces a new PCI Express SSD which is also bootable. Big difference between the Angelbird product and OCZ’s RevoDrive is the throughput on the top end. This means if you purchase the most expensive fully equipped card from either manufacturer you will get 900+MBytes/sec. on the Angelfire versus 700+MBytes/sec. on the Revodrive from OCZ. Other differences include the ‘native’ support of the OCZ on the Host OS. I think this means that they aren’t using the ‘virtual OS’ on the embedded chips to boot so much as having the PCIe drive electronics make everything appear to be a real native boot drive. Angelbird uses an embedded OS to virtualize and abstract the hardware so that you get to boot any OS you want and run it off the flash memory onboard.

The other difference I can see from reading the announcements is that only the largest configured size on the Angelbird that gets you the fastest throughput. As drives are added the RAID array is striped over more available flash drives. The OCZ product also does a RAID array to increase speed, however they hit the maximum throughput at an intermediate size (~250GByte configuration) and at the maximum size too. So if you want an ‘normal’ to ‘average’ size storage but better throughput you don’t have to buy the maxed out most expensive version of the OCZ RevoDrive to get there. Which means this could be a more manageable price for the gaming market or for the PC fanboys who want faster boot times. Don’t get me wrong though, I’m not recommending buying an expensive 250GByte RevoDrive if a similarly sized SATA SSD costs a good deal less. No far from it, the speed difference may not be worth the price you pay. But, the RevoDrive could be upgraded over time and keep your speeds at the max 700+MBytes/sec. you get with its high throughput intermediate configuration. Right now, I don’t have any prices to compare for either the Angelbird or OCZ Revodrive products. I can tell you however that the Fusion-io low end desktop product is in the $700-$800 range and doesn’t come with upgradeable storage, you get a few sizes to choose from, and that’s it. If either of the two products ship at a price significantly less than the Fusion-io product everyone will flock to them I’m sure.

Two other significant features touted by both product announcements are the SandForce SF-1200 flash controller. Right now that controller is the de facto standard high throughput part everyone is using for the SATA SSD products. There’s even an intermediate part on the market called the SF-1500 (their top end offering). So it’s de rigeur to include the SandForce SF-1200t in any product you hope to sell to a wide audience (especially hardware fanboys). However, let me caution you that in the flurry of product announcements and always keeping an eye on preventing buyers remorse, SandForce did announce very recently a new drive controller they have labelled the SF-2000 series. This part may or may not be targeted for the consumer desktop market, but depending on how well it performs once it starts shipping you may want to wait and see if the revision of this crop of newly announced PCIe cards adopts the SandForce controller chip to gain the extra throughput it is touting. The new controller is rated at 740MBytes/sec. all by itself, with 4 SSDs attached to it on a PCIe card, theoretically four times 740 equals 2,096 and that is a substantially large quantity of data coming through th PCI Express data bus. Luckily for most of us the PCI Express interface on a 4X (four lane) data bus has a while to go before it gets saturated by all this disk throughput. The question is how long will it take to overwhelm the a four lane PCI Express connector? I hope to see the day this happens.

Advertisement

Posted

in

, ,

by

%d bloggers like this: